Air Quality Monitoring and Management

Seminar

Burgas, Bulgaria 26-27 May 2010

Bjarne Sivertsen, Leif Marsteen and Claudia Hak

F 7/2010

Air Quality Monitoring and Management

Seminar

Bjarne Sivertsen, Leif Marsteen and Claudia Hak

Contents

		Page
1	Introduction	3
2	Air quality management	4
3	Monitoring programme design	5
4	Air quality legislation	6
5	Instrumentation; monitoring and sampling	7
6	Monitoring and sampling, network operation	8
7	Quality systems7.1 The Quality organisation7.2 The Reference Laboratory7.3 The Quality documentation	10 11
8	Air quality assessment and reporting	13
9	Data dissemination	14
10	Air quality management planning (AQMP)	14
11	References	17
Ap	pendix A Contents of the seminar	21
Ap	pendix B The transparencies used during the presentations	27

Air Quality Monitoring and Management

Seminar

1 Introduction

The objective of this seminar is to present the total air quality management planning system. The different elements of the air quality monitoring and management system will be presented based on internationally accepted standards through a 2 day seminar. The participants should be practitioners and experts from environmental monitoring institutes as well as stakeholders and people interested in air pollution issues.

The seminar is being presented as lectures over two days covering monitoring and sampling methods and equipment, EU legislation and directives, WHO guidelines and EU legislation, key air quality parameters, methods of data collection, validation, analysis and reporting and air quality planning.

The schedule for the presentations are presented in Appendix A and a summary of the topics in the following:

Day 1: Wednesday 26 May 2010

- 09:15 Air quality management
- 10:30 Monitoring programme design
- 11:30 Instrumentation; monitoring and sampling
- 13:30 Monitoring and sampling, network operation
- 14:30 Quality systems, QA/QC

Day 2: Thursday 27 May 2010

- 09:00 Air quality legislation
- **10:00** Legislation Bulgaria (by Municipality)
- 10:45 Air quality assessment and reporting
- 13:15 Results from the screening study, Burgas
- 14:15 Data dissemination
- 14:45 Air quality management planning

15:30	Summary, conclusions and discussions
16:00	End of Seminar

The transparencies used during the course are presented in Appendix B.

2 Air quality management

An air quality management plan must within the domain of the relevant national department, province or municipality seek to:

- Give effect, in respect of air quality, and relate to National Environmental Management Plans;
- Improve air quality;
- Identify and reduce the negative impact on human health and the environment of poor air quality
- Address the effects of emissions from the use of fossil fuels in residential applications;
- Address the effects of emissions from industrial sources;
- Address the effects of emissions from any point or non-point source also other than the ones stated above;
- Implement the nation's obligations in respect of international agreements and
- Give effect to best practice in air quality management;

The Air Quality Management Plan (AQMP) should also describe how the relevant national department, province or municipality would comply with such other requirements as may be prescribed.

The main purpose of the AQMP development process is to establish an effective and sound basis for planning and management of air quality in the selected area. This type of planning will ensure that significant sources of impacts are identified and controlled in a most cost-effective manner. The best air quality management tools and practices may be used in order to assure the most adequate solutions. The ultimate goal will thus be to assure that health effects and impact on building materials and the environment will be avoided in the future.

The development of the AQMP will take into account:

- Air Quality Management System (AQMS) requirements
- Operational and functional structure requirements
- Source identification through emission inventories
- Source reduction alternatives, which may be implemented
- Mechanisms for facilitating interdepartmental cooperation in order to assure that actions are being taken
- Institutional building and training requirements

Important elements of the AQMP are the identification of sources and development of a complete emission inventory, the development and operations of an air quality monitoring programme and the development and application of dispersion models.

A major task in this work is to collect the necessary input data. The programme starts with preliminary assessments based on available data and the identification of zones into which the country will be divided. We assume that the setting of standards and regulations is already available.

3 Monitoring programme design

The typical approach to network design involves placing monitoring stations or sampling points at carefully selected representative locations, chosen on the basis of required data and known emission/dispersion patterns of the pollutants under study. This scientific approach will produce a cost effective air quality monitoring programme. Sites must be carefully selected if measured data are to be useful. Moreover, modelling and other objective assessment techniques may need to be utilized to "fill in the gaps" in any such monitoring strategy.

Another consideration in the basic approach to network design is the scale of the air pollution problem:

- The air pollution is of predominantly local origin. The network is then concentrated to within the urban area. (e.g NO₂, SO₂, PM₁₀, CO, benzene)
- There is a significant regional contribution to the problem and more emphasis will be on the regional part. (e.g. Ozone, PM).

The design of the air quality monitoring programme will depend upon the measuring strategy, which again depends on the objectives of the monitoring, and the pollutants to be assessed. For the relevant air quality parameters or selected indicators the concentration of pollutants and associated averaging time need to be specified. Specifications are also needed on where, how, and how often measurements should be taken.

In the initial design phase we will have to evaluate:

- The variation of pollutant concentrations in space and time;
- The availability of supplementary information;
- The accuracy of the estimate, that is required.

It may be possible to derive, in quantitative terms, a measuring strategy from this information

The number of monitoring stations and the indicators to be measured at each station in the final permanent network may then be decided upon based on the results of the screening study as well as on knowledge of sources and prevailing winds.

Once the objective of air sampling is well-defined and some preliminary result of the screening study is available, a certain operational sequence has to be followed. A best possible definition of the air pollution problem together with an analysis of available personnel, budget and equipment represent the basis for decision on the following questions:

- 1. What spatial density of sampling stations is required?
- 2. How many sampling stations are needed?
- 3. Where should the stations be located?
- 4. What kind of equipment should be used?
- 5. How many samples are needed, during what period?
- 6. What should be the sampling (averaging) time and frequency?
- 7. What additional background information is needed:
- Meteorology,
- Topography,
- Population density,

- Emission sources and emission rates,
- Effects and impacts.
- 8. What is the best way to obtain the data (configuration of sensors and stations)?
- 9. How shall the data be accessible, communicated, processed and used?

4 Air quality legislation

Ambient standards define targets for air quality management and establish the permissible amount or concentration of a particular substance in or property of discharges to the atmosphere, based on what a particular receiving environment can tolerate without significant deterioration.

The relevant laws, regulations, standards and guidelines will be used as mechanisms to obtain information on atmospheric impacts, which in turn will be used to evaluate predicted impacts against the ambient standards.

Part of the development of the air quality management programme includes training, institutional building and information management.

Air quality management education should be integrated in all education programmes, at all levels, in all curricula and disciplines of formal and non-formal education in the national qualification framework.

The EU limit values specify for most of the compounds a certain number of hours or days when the limit value may be exceeded. The Directives also clearly specify the proportion of valid data needed as well as margin of tolerance. A summary of limit values is presented in the Table below.

Pollutant	Averaging time	Limit- and Guidelines Values	
		EU ¹ 1)	WHO
Sulphur Dioxide (SO ₂)	1 hour	350 (24 x)	500 (10 min)
	24 hours	125 (3 x)	50 *
	Year	-	-
Nitrogen Dioxide (NO ₂)	1 hour	200 (18 x)	200
	Year	40	40
Ozone (O ₃)	1 hour	-	150-200
	8 hours	120 *)	120
Carbon Monoxide (CO)	1 hour	-	30 000
	8 hours	10 000	10 000
Particles < 10 µm (PM10)	24 hours	50 (35 x)	(150) 50
	Year	40	(50) 20
Particles < 2,5 µm PM2,5)	24 hours	-	(75) 25
	Year	25	(25) 10
Benzene	Year	5	-
Lead (Pb)	Year	0,5	0.5-1,0

¹ Ref: EU limit values for protection of human health (2008/50/EC). (n x) not to be exceeded more than n times.

More details concerning EU limit values are presented in Appendix B. The EU Directives also specify lower and upper threshold values which indicate levels at which air quality assessment and measurements has to be undertaken.

The development of information dissemination systems could be important elements in the awareness campaigns initiated for air quality management planning, together with training of the provincial environmental departments. The campaigns should be implemented by the local government for general air pollution, and the provincial environmental departments for hazardous and industrial emissions.

5 Instrumentation; monitoring and sampling

Instruments for measurements of air pollutants may vary strongly in complexity and price from the simplest passive sampler to the most advanced and most often expensive automatic remote sampling system based upon light absorption spectroscopy of various kinds. The following Table indicates four typical types of instruments, their abilities and prices.

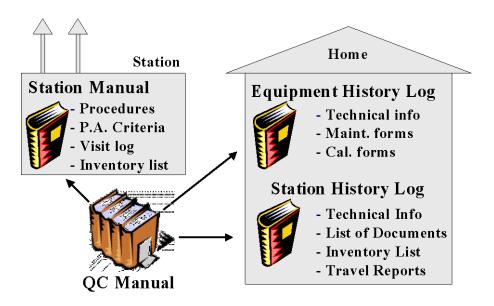
Instrument type	Type of data collected	Data availability	Typical averaging time	Typical price (US \$)
Passive sampler	Manual, in situ	After lab analyses	1-30 days	10
Sequential sampler	Manual /semi- automatic , in situ	After lab analyses	24 h	1 000
Monitors	Automatic Continuous, in situ	Directly, on-line	1h	>10 000
Remote monitoring	Automatic/Continuo us, path integrated (space)	Directly, on-line	<1 min	>100 000

Different types of instruments, their abilities and price.

Relatively simple equipment is usually adequate to determine background levels (for some indicators), to check Air Quality Guideline values or to observe trends. Also for undertaking simple screening studies, passive samplers may be adequate. However, for complete determination of regional air pollution distributions, relative source impacts, hot spot identification and operation of warning systems more complex and advanced monitoring systems are needed. Also when data are needed for model verification and performance expensive monitoring systems are usually needed.

The instruments most often applied to measure the main air pollution indicators are automatic monitors. These instruments are developed by several different providers, but they all should be using so called reference methods for analysing the air. Methods and instruments for measuring continuous air pollutants must be carefully selected, evaluated and standardised. Several factors must be considered:

- * *Specific*, i.e. respond to the pollutant of interest in the presence of other substances,
- * Sensitive and range from the lowest to the highest concentration expected,


- * *Stable*, i.e. remain unaltered during the sampling interval between sampling and analysis,
- * *Precise, accurate* and representative for the true pollutant concentration in the atmosphere where the sample is obtained,
- * Adequate for the *sampling time* required,
- * *Reliable and feasible* relative to man power resources, maintenance cost and needs,
- * Zero drift and calibration (at least for a few days to ensure reliable data),
- * Response time short enough to record accurately rapid changes in pollution concentration,
- * Ambient temperature and humidity shall not influence the concentration measurements,
- * Maintenance time and cost should allow instruments to operate continuously over long periods with minimum downtime,
- * Data output should be considered in relation to computer capacity or reading and processing.

If one considers the typical air concentrations of some pollutants of interest in air pollution studies, it is seen that as we go from background to urban atmosphere, the concentration for the most common pollutants increases roughly by a factor 1000. In the next step from urban to emission we see another factor of about 1000. The specified range for the given instrument has therefore to be selected based on the purpose of the measurements.

The measurement reference methods as specified by the European Union was given in the EU Council Directive 1999/30/EC. A brief summary of these reference methods is presented in the course.

6 Monitoring and sampling, network operation

As a basis for operating the air monitoring system all quality system documentation should be compiled into a Quality Manual. When installing quality documentation at a measurement station, copies will be made from relevant documents in the Quality Manual. The documentation at the measurement station is compiled into a Station Manual. The manual includes all Standard Operation Procedures (SOPs), forms and other documentation used at that particular station. At "home" a history log is compiled for each measurement instrument. The history log will include remarks on maintenance, repairs, etc. as well as service and calibration reports. The figure below shows the conceptual design of the quality documentation.

The Quality Manual and distributed documentation.

The content of the SOPs will be based on the instruction manuals delivered with the instruments. References will be made to the instruction manuals as necessary. The aim is to provide easy to read "cookbooks" that secure unified operation of instruments by all operators. All operations that may influence the quality of the measurement results should be covered by SOPs. A specific form in which the operator documents his or her work shall accompany all SOPs. The forms are stored in the history log for later reference.

The following SOPs should be available:

- SOPs on installation, operation and maintenance of instruments
- SOPs on calibration of instruments and gas cylinders
- SOPs/guidance documents on fault finding and trouble shooting
- Action limits specific for each type of instrument
- SOP on data validation
- Description of measurement methods
- Description of traceability in calibrations

7 Quality systems

In ambient and emission air quality measurement systems, the Quality System is concerned with all activities that contribute to the quality of the measurements. The aim of the Quality System is to assure that the results meet the predefined standards of quality. To produce results of known and sufficient quality there is a whole range of tasks to be performed such as periodic status checking, maintenance, calibrations, data evaluation and so on. Failure to perform all or some of these tasks will decrease the data quality.

The Quality System shall assure that:

• Data is reliable for its intended use (fulfils the Data Quality Objectives).

- Data has known quality (fulfils the performance standards).
- Data from different sites can be compared.
- The receiver of the measurement results (management, public, etc.) has confidence in the results.

The quality terms relevant for Quality Assurance/Quality Control (QA/QC) procedures and criteria can be defined as follows (ISO 8402, 1994):

- Quality is the totality of characteristics of an entity that bear on its ability to satisfy stated or implied needs.
- Quality Assurance involves the management of the entire process which includes all the planned and systematic activities which are needed to assure and demonstrate the predefined quality of data, to provide adequate confidence that an entity will fulfil requirements for quality.
- Quality Control comprises the operational techniques and activities that are undertaken to fulfil the requirements for quality.

The Quality Assurance activities cover all the pre-measurement phases, ranging from definition of data quality objectives to equipment and site selection and personnel training. The Quality Control activities cover all operational work such as routine maintenance, calibration, data collection, data validation and data reporting. For emission inventories and modelling it may cover activities such as entering or editing emission data in the emission inventory, running models and reporting results. In addition to Quality Assurance and Quality Control, a third activity called Quality Assessment is usually implemented in the Quality System. The Quality Assessment provides for a periodic external audit of the Quality Assessment will all be parts of the Quality Plan. They have to be operational and co-ordinated and must be considered as necessary parts of any Air Quality Management System.

7.1 The Quality organisation

A modern integrated Air Quality Management System (AQMS) is a complex system. It may cover very different activities such as instrument maintenance, data collection, emission inventories, running models, data reporting and audits. People working on the system will range from technicians maintaining instruments to planners running air quality models. In addition the AQMS can span several industries and geographical areas.

The quality organisation will typically include the following functions/people:

- Operators focused on Quality Control
- The Quality Manager focused on Quality Assurance
- The Reference Laboratory focused on Quality Assurance and Quality Assessment

The operators run instruments, computer systems and models. They report status on quality matters to the Quality Manager. The Quality Manager has the overall responsibility for the Quality System within the measurement network. It is the responsibility of the Quality Manager to assure that the operators are running the AQMS in compliance with the requirements of the Quality System. The Quality Manager will report any requests for changes or updates in the quality documentation to the Reference Laboratory. The Quality Manager will be responsible for initiating training programs.

A workshop/calibration laboratory will be responsible for service, repair and calibration of instruments. The calibration laboratory will ensure that the measurement instruments are in good working order and calibrated with traceability to the Reference laboratory.

7.2 The Reference Laboratory

Article 3 of the Framework directive calls for the designation of bodies responsible for ensuring accuracy of measurements etc. This implies the appointment of a Reference Laboratory. The Reference Laboratory will be responsible for administration and maintenance of the Quality System. This typically includes preparing new procedures and updating the quality documentation. The Reference Laboratory will also maintain the reference calibration standards. The reference standards will represent the highest level of calibration in the country. The Reference laboratory will provide traceability to the reference standards to all measurement instruments in the monitoring network. This can be accomplished either by having the Reference Laboratory calibrating all calibration materials used in the nework or if the network has a suitable calibration laboratory only calibrating their reference standards.

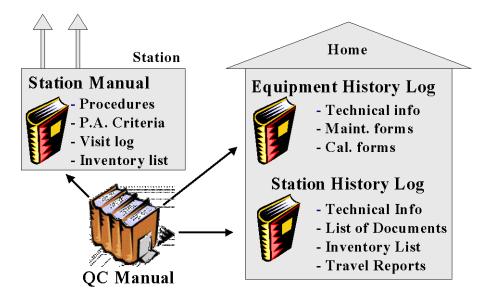
The Reference Laboratory will perform audits in the measurement network to assess the actual quality of the measurements. Based on the results of the audits the Reference Laboratory will advise the network operators on how to improve the data quality. A yearly data quality assessment report will be submitted to the authorities.

The Reference Laboratory will participate in international intercomparison tests to verify its competence and to establish international traceability. It will also participate in international working groups such as the group of National Air Quality Reference Laboratories in Europe (AQUILA) to get exchange information and to harmonise the quality work with other countries.

7.3 The Quality documentation

To ensure unified operation across the AQMS, a documented quality system is necessary. The Quality System will be documented in the Quality Manual. The Quality Manual will consist of two main parts:

- Quality Assurance Management level.
- Quality Control The daily work.


The Quality Assurance part of the Quality Manual will include a description of:

- The overall objective of the Quality system.
- How responsibilities, tasks and functions are shared between the parties involved in the quality work.
- The Data Quality Objectives (DQO) based on the intended use of the data.
- Instrument performance standards and criteria (performance acceptance criteria) based on the DQOs.
- Quality System audits.
- Training programs for operators.
- Document handling and document version control

The performance standard/criteria related to air (and emissions) monitoring are based upon the setting of Data Quality Objectives (DQO). The performance acceptance criteria related to monitoring are then set so that the DQOs specified are fulfilled.

To keep the measurement instruments within the limits of the performance acceptance criteria it is necessary to operate them (maintain, calibrate, service, repair, etc.) according to certain procedures. The computer systems, covering data collection, database maintenance and use of the modelling tools has to be operated according to certain procedures too. These procedures, called Standard Operations Procedures (SOPs), are collected in the Quality Control part of the Quality Manual.

The figure below shows the conceptual design of the quality documentation.

The Quality Manual and distributed documentation

The Quality Control part of the Quality Manual will include procedures on:

- Maintenance of measurement instruments
- Calibration of measurement instruments
- Data collection
- Data validation
- Computer and data systems maintenance
- Quality System audits
- Training

Each SOP will be documented in a specific form. The form will be completed by the operator during the execution of the SOP and stored systematically for later reference.

A station manual is kept at the station containing documents necessary for operating that specific station. At home all equipment and the shelter itself will have a history log book where notes and documentation on the equipment is stored. The main documentation at a site is:

- Standard Operations Procedure (SOP) for each instrument at the site
- A form for each SOP to document the procedure
- Performance Acceptance Criteria specific to the instrumentation at the site

8 Air quality assessment and reporting

In general it is always necessary to perform standardized statistical analysis in order to assess air quality trends, changes in emissions or impact from specific types or groups of sources. The severity of the air pollution problem or the air quality should be specified relative to air quality guideline (AQG) values, standards or predefined levels of classification (e.g. good, moderate, unhealthy or hazardous).

The number of hours and days, or percentage of time when the air pollution concentrations have exceeded AQG values should be presented. This will also need minimum requirements of data base completeness. Long-term averages (annual or seasonal) should be presented relative to AQG.

Before undertaking statistical evaluations the data should be presented and validated based upon a form of time series. These data must be evaluated logically to correct for drift in instruments, and eliminate data that are identified to be including errors. It is also important that the data are checked with other relevant information.

Different use of the data collected and different presentations are needed for the different users. Data presentations have been produced to meet the requirements from:

- Specialists on air pollution,
- Policy makers and
- The public.

The *specialist* often needs a tool that gives easy access to the data with the ability to treat these data in different ways. The specialist also wants to apply the data and prepare his own way of presenting results graphically.

The *policy makers* need presentations that illustrate the conclusions that the specialist has drawn from the information available. This is usually best done through a graphical presentation.

The *public* needs information on the general state of the environment. The type of information that is needed is more general than that of the policy maker. It often needs to cover environmental issues that are of special concern to the public. This could be the air quality that is expected to occur in the urban area on this specific day. This information could be given as a short term forecast or based upon actual on-line data.

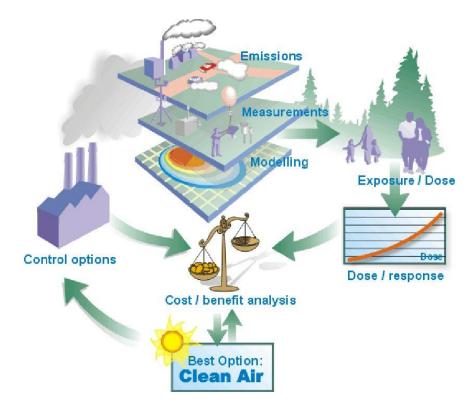
9 Data dissemination

Data dissemination and information to the public is an important tool in raising public awareness. Data can be prepared and distributed from databases in many different ways to meet the needs of the users. Data presentation systems are often based on the air quality management system. Several applications have also been designed for use directly in Internet presentations, WAP (Wireless Application Protocol) solutions, SMS (Short Message Service) and MMS (Multimedia Messaging Solution) services. Several projects have been designed for utilizing such services and also in international research programmes like EU-Information Society of Tomorrow e.g. through the APNEE (www.apnee.org) project where links to several Web pages in Europe may be found.

10 Air quality management planning (AQMP)

Optimal abatement strategies have been developed based on air quality measurements combined with models, dose response functions and effect/cost estimates. These approaches have produced a list of the most cost effective actions that could be implemented in selected cities in Europe and Asia.

The AQMP approaches have been performed to assist in the design and implementation of policies, based on monitoring, and management in order to restore the air quality in large urban areas. Its goal was to identify the components of a general action plan to manage and control air pollution. Abatement measures in the plan were categorized according to cost-effectiveness, as well as the time required implementing them and when they would become effective. The air quality management strategy planning system (AQMS) contains the following main components:


- Air quality assessment
- Environmental damage assessment
- Abatement options assessment
- Cost-benefit or cost-effectiveness analyses
- Abatement measures
- Optimum control strategy

Assessment: Air quality assessment, environmental damage assessment and abatement options assessment provide input to the cost analysis, which is also based on established air quality objectives (e.g. air quality standards) and economic objectives (e.g. reduction of damage costs). The analysis leads to an Action Plan containing abatement and control measures for implementation in the short, medium, and long term. The goal of this analysis is an optimum control strategy.

The AQMS depends on the following set of technical and analytical tasks, which can be undertaken by the relevant air quality authorities:

- Creating an inventory of polluting activities and emissions;
- Monitoring air pollution and dispersion parameters;
- Calculating air pollution concentrations with dispersion models;
- Assessing exposure and damage;
- Estimating the effect of abatement and control measures;
- Establishing and improving air pollution regulations and policy measures.

These activities, and the institutions necessary to carry them out, constitute the prerequisites for establishing the AQMS as illustrated in the Figure below.

Action plans and implementation: Categories of "actions" include the following:

- Technical abatement measures;
- Improvements of the factual database (e.g. emission inventory, monitoring, etc.);
- Institutional strengthening;
- Implementing an investment plan;
- Awareness raising and environmental education.

Monitoring: A third essential component of AQMS is continued monitoring, or surveillance. Monitoring is essential to assessing the effectiveness of air pollution control actions. The goal of an Air Quality Information System (AQIS) is, through thorough monitoring, to keep authorities, major polluters and the public informed on the short- and long-term changes in air quality, thereby helping to raise awareness; and to assess the results of abatement measures, thereby providing feedback to the abatement strategy. This part of the AQMS will also include institutional building and training in order to assure sustainability in the system established in the area or region in question.

A system for air quality management requires activities in the following fields:

- Inventorying of air pollution activities and emissions
- Monitoring of air pollution, meteorology and dispersion
- Calculation of air pollution concentrations, by dispersion models
- Inventorying of population, materials and urban development
- Calculation of the effect of abatement/control measures
- Establishing/improving air pollution regulations

The implementation of plans and strategies for air quality improvements is done through the use of policy instruments by ministries, regulatory agencies, law enforcers and other institutions. Indeed, some of these institutions may well be the same institutions as those, which must be in place to carry out the AQMS analysis described above, which ideally is the basis for the plans and strategies. Thus, the existence of relevant institutions, and an organisational institution structure, is part of the basis for AQMS work.

Different levels of government - national, regional and local - have different roles and responsibilities in the environmental sphere. Air quality standards or guidelines are usually set at the national level, although local governments may have the legal right to impose stricter regulations. National governments usually assume the responsibility for scientific research and environmental education, while local governments develop and enforce regulations and policy measures to control local pollution levels.

Institutional arrangements, laws and regulations are important parts of an AQMS. Some countries have their own political and administrative hierarchies and technical expertise that affect institutions, laws and regulations related to air pollution control. Some examples of NILU applied AQMS procedures are being presented in Appendix B based on project undertaken in China, (such as Guangzhou, and the Shanxi province) and in Vietnam. One of the experiences from these studies is pointing at the importance of clarity in the organisational structures and the division and description of responsibilities and "lines-of-command".

11 References

AirQUIS (2010) About AirQUIS. URL: <u>http://www.nilu.no/airquis/</u> [2010-05-06].

- Bøhler, T., Laupsa, H. and McInnes, H. (2003) Trend analysis of air pollution exposure in Oslo 1995, 1998 and 2001, Better air quality in Oslo. URL: <u>http://www.nilu.no/clear/news4.htm</u> [2010-05-06].
- Council of the European Communities (CEC) (1999) Council directive 1999/30/EC of 22 April 1999 relating to limit values for sulphur dioxide, nitrogen dioxide and oxides of nitrogen, particulate matter and lead in ambient air. *Off. J. Eur. Communities: Legis.*, 42, L 163, 41-60 (1999/421/EC).
- EU (2000) Directive 2009/69EC of the European Parliament and of the Council, of 16 November 2000 relating to limit values for benzene and carbon monoxide in ambient air. *Off. J. Eur. Communities: Legis., 43,* L 313, 12-21. URL: <u>http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2000:313:0012:0021:EN:PDF</u>
- EU (2001a) Commission Decision of 17 October 2001 amending Annex V to Council Directive 1999/30/EC relating to limit values for sulphur dioxide, nitrogen dioxide and oxides of nitrogen, particulate matter and lead in ambient air. Off. J. Eur. Communities: Legis., 44, L 278, 35-36 (2001/744/EC). URL: <u>http://www.europa.eu.int/eur-</u> lex/lex/LexUriServ.do?uri=CELEX:32001D0744:EN:HTML
- EU (2001b) Commission decision of 17 October 2001 amending the Annexes to Council Decision 97/101/EC establishing a reciprocal exchange of information and data from networks and individual stations measuring ambient air pollution within the Member States. *Off. J. Eur. Communities: Legis.*, 44, L 282, 69-76 (2001/752/EC).
- EU (2001c) Guidance on the Annexes to Decision 97/101/EC on Exchange of Information as revised by Decision 2001/752/EC.
- EU (2001d) Comission decision of 8 November 2001 laying down a questionnaire to be used for annual reporting on ambient air quality assessment under Council Directives 96/62/EC and 1999/30/EC. *Off. J. Eur. Communities: Legis.*, 48, L 319, 45-64 (2001/839/EC).
- EU (2002) Directive 2002/3/EC of the European Parliament and of the Council of 12 February 2002 relating to ozone in ambient air. *Off. J. Eur. Communities: Legis.*, 45, L 067, 14-30. URL:<u>http://europa.eu.int/eur-lex/pri/en/oj/dat/2002/1_067/1_06720020309en00140030.pdf</u>

- EU (2005) Proposal for a Directive of the European Parliament and of the Council on ambient air quality and cleaner air for Europe. Brussels (COM(2005) 447 final). URL: <u>http://europa.eu.int/comm/environment/air/cafe/pdf/cafe_dir_en.pdf</u>
- Larssen, S., Sluyter, R. and Helmis, C. (1999) Criteria for EUROAIRNET The EEA Air Quality Monitoring and Information Network. Copenhagen, European Environment Agency (Technical Report No. 12). URL: <u>http://binary.eea.eu.int/t/tech12.pdf</u>
- Sivertsen, B. and Bøhler, T. (2000) On-line Air Quality Management System for Urban Areas in Norway. Presented at the seminar "The air of our cities ... it's everybody's business", Paris, 16-18 February 2000. In: *Proceedings. Paris, Marie de Paris, Environment. Fourth theme, paper D6*, pp. 44-45 (NILU F 4/2000).
- Sivertsen, B., The N. Le V. K. and Vo T. D. (2004). The air quality monitoring and management system for HCMC, Vietnam. Presented at BAQ conference, Agra, India, December 2004. (NILU F 60/2004). URL: <u>http://www.cleanairnet.org/baq2004/1527/article-59135.html</u>
- Sivertsen, B. (2005) Ho Chi Minh City Environmental Improvement Project. Air Quality Assessment and Reporting. Presented at DONRE, HCMC, November 2005. Kjeller (NILU F 60/2005). URL: <u>http://www.nilu.no/index.cfm?ac=publications&folder_id=4309&publication_id</u> <u>=9245&view=rep</u>
- US EPA (1990) National Ambient Air Quality Standards (NAAQS). URL: <u>http://epa.gov/air/criteria.html</u> [2010-05-06] and URL: <u>http://www.epa.gov/ttn/naaqs/</u> [2010-05-06].
- US EPA (2006) Environmental Protection Agency, 40 CFR Parts 53 and 58. Revisions to ambient air monitoring regulations. Proposed rule. Federal Register, vol. 71, no. 10, Tuesday, January 17, 2006. URL: <u>http://frwebgate4.access.gpo.gov/cgibin/PDFgate.cgi?WAISdocID=152830221851+0+2+0&WAISaction=retrieve</u> [2010-05-06].
- Van Alst, R., Edwards, L., Pulles, T., De Saeger, E., Tombrou, M. and Tønnesen, D. (1998) Guidance report on preliminary assessment under the EC air quality directives. Copenhagen, European Environment Agency (Technical report no. 11). URL: <u>http://www.europa.eu.int/comm/environment/air/ambient.htm</u>, click on <u>Guidance report on Preliminary Assessment under EU Air Quality Directives</u>
- WHO, Regional Office for Europe (1995) Methodology for assessment of exposure to environmental factors in application to epidemiological studies. *Sci. Tot. Environ.*, *168*, 93-100.

- World Health Organization (1999) Monitoring ambient air quality for health impact assessment. Copenhagen, WHO Regional Office for Europe (WHO Regional Publications, European Series, No. 85). URL: <u>http://www.who.dk/document/e67902.pdf</u>
- World Health Organization (2000) Air quality guidelines for Europe; second edition. Copenhagen, WHO Regional Office for Europe (WHO regional publications, European series, No 91). Full background material available on URL: <u>http://www.euro.who.int/air/activities/20050223_4</u> [2010-05-06].
- World Health Organization (2005) WHO air quality guidelines global update 2005 Report on a Working Group meeting, Bonn, Germany, 18-20 October 2005. Copenhagen, WHO Regional Office for Europe (EUR/05/5046029). URL: <u>http://www.euro.who.int/Document/E87950.pdf</u>

Appendix A

Contents of the seminar

Day 1: Wednesday 26 May 2010

Morning

09:00 Welcome Introduction

09:15 Air quality management

Sources Monitoring Air quality assessment Modelling Data dissemination Abatement planning

10:15 Break

10:30 Monitoring programme design

Objectives Design the programme Air quality indicators Operational sequence Meteorological data The mobile station

11:30 Instrumentation; monitoring and sampling

Fields of application Measurement principles and standard measurement methods Data logging and data collection Operational costs Procurement, installation and start-up of measurement stations Commercially available instruments and data collection systems

12:30 LUNCH

Afternoon

13:30 Monitoring and sampling, network operation

Routine operation, site visits Preventive maintenance Calibrations, service and repairs Data validation

14:30 Quality systems, QA/QC

Quality Assurance, Quality Control and Quality Assessment References to EU directives, tasks of The National Reference Laboratory Requirements for traceability in calibrations, nationwide and internationally Intercomparison exercises and demonstration of measurement capabilities Quality manual overview, examples of procedures Accreditation and references to ISO 17025

15:30 Questions and Discussions 16:00 End of day 1

Day 2: Thursday 27 May 2010

Morning

09:00 Air quality legislation

Guidelines and limit values WHO guidelines EU Directives Framework directives Daughter directives Limit values and standards

10:00 Legislation Bulgaria (by Municipality)

10:30 Break

10:45 Air quality assessment and reporting Statistics Air quality and meteorology Exceeding limit values Possible impacts (health and nature) Designing the AQ report

11:45 Questions and discussions

12:15 LUNCH

Afternoon day 2

13:15 Results from the screening study, Burgas

The sampling programme Passive sampling, results PM sampling in situ General aspects of the air quality

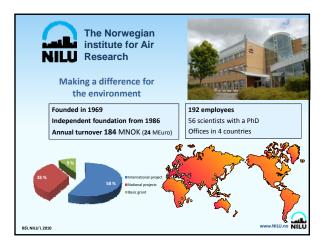
14:15 Data dissemination

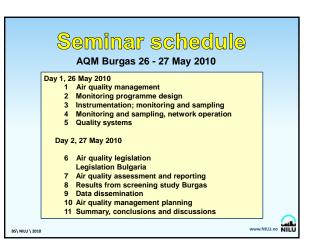
Requirements for data dissemination with references to EU directives Different information channels, Web, e-mail, SMS, radio, TV Information adapted to different audiences, public, experts, decision makers

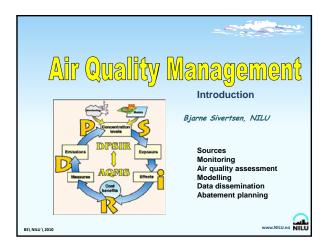
24

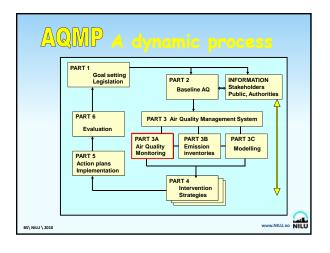
Information content, online data, historical data, warnings, forecasting, reports, Reporting to the European Commission Live example (internet connection required)

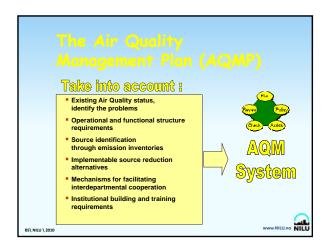
14:45 Air quality management planning

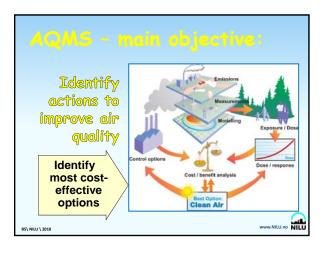

Models Emission inventories (point, area, line-sources) Concentration distribution and exposure Impact assessment Abatement strategies Action plans – future air –scenario evaluation

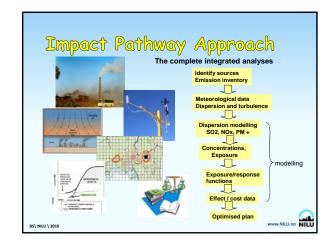

15:30 Summary, conclusions and discussions

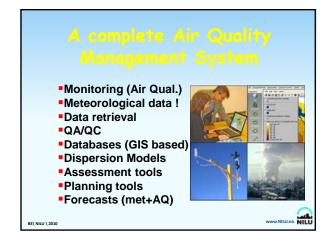

16:00 End of Seminar

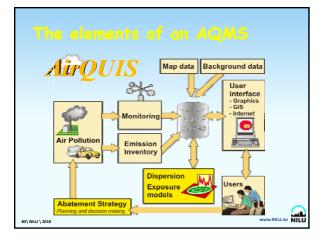

Appendix B

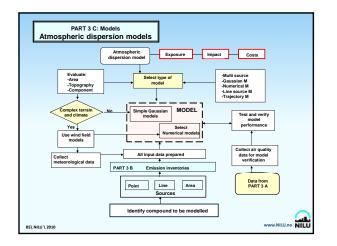

The transparencies used during the presentations

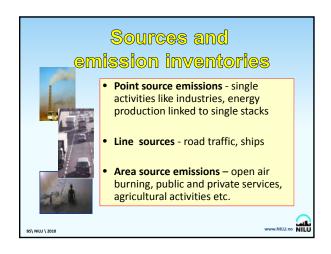


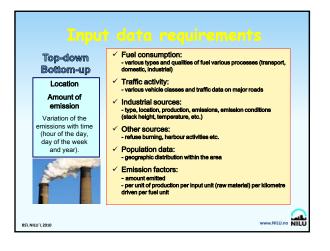


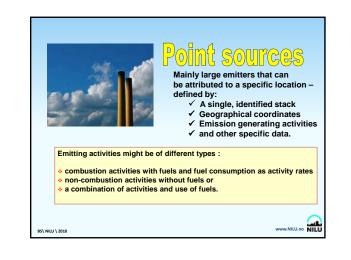


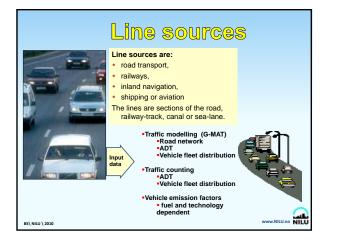


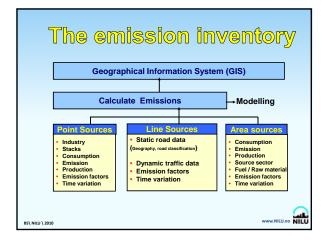


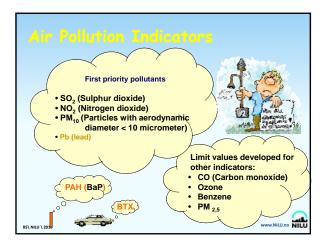


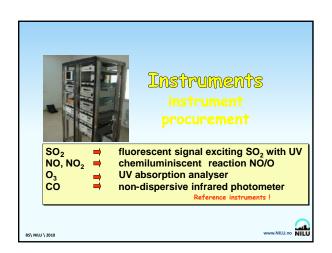


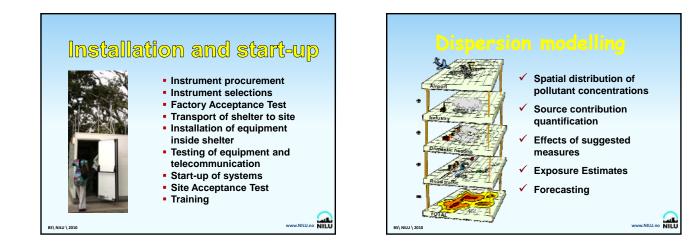


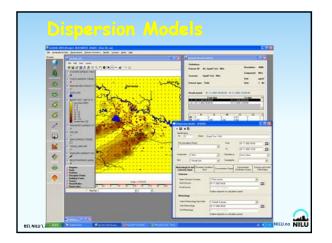


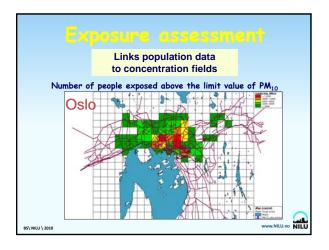


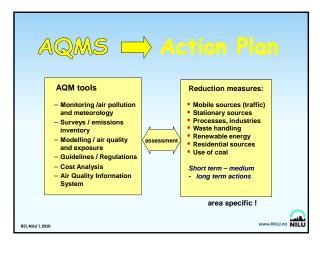


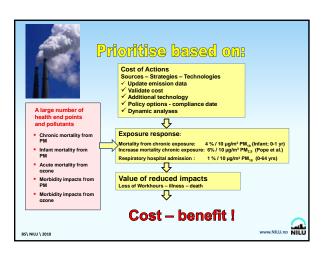












Total NO₂

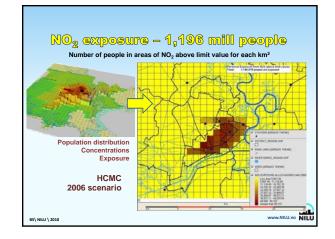
Pre 2004

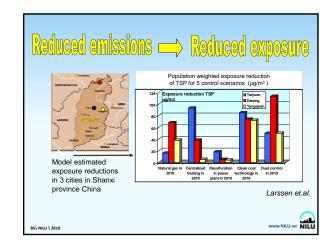
Future (2010?)

04 situation: 1,793.139 persons

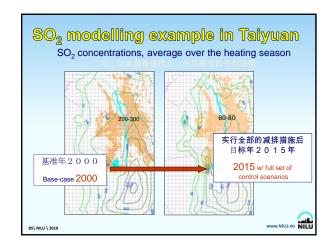
Future scenario: 639,220 persons

BS\ NILU \ 2010

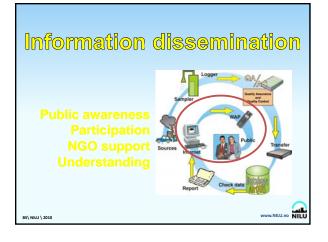

exposure estimates

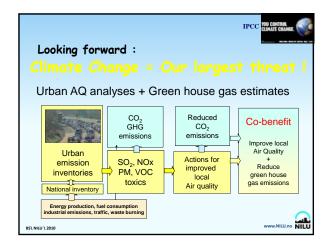

0.5 1 1.5 2

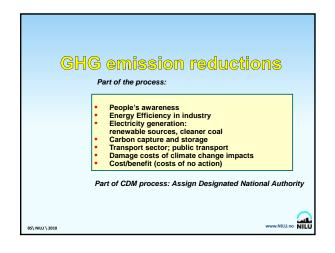
People living in areas with NO₂ above limit value:

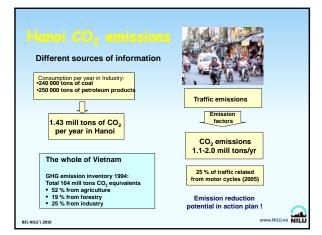

3 scenarios

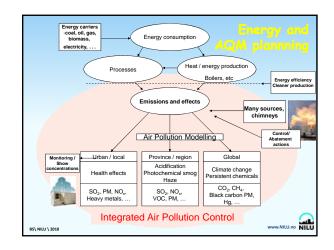
www.NILU.no

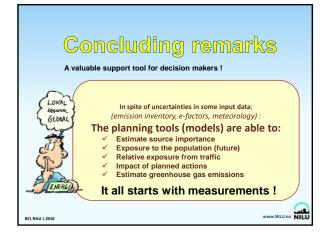


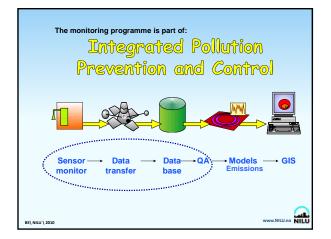


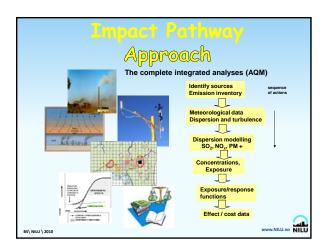


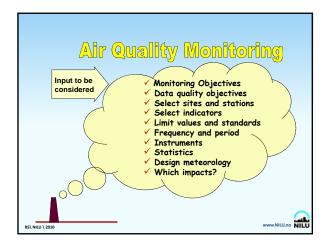


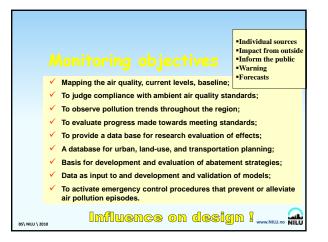

	trol option	s for SO	ost-benefit (and TSP i	n Taiyuar	1
	a companie	Emission Reduction (1)	Concentration reduction (µg/m ²)	Cost-benefit ratio	Rank
	Natural gas utilization	20400	19.79	-52	2
	Desulfuration in power plants	18450	6.47	115	-4
	Centralized beating	30000	51.00	-424	1
A comparison	Implementation of productivity policies	9280	5.75	2000	5
of cost-benefit	Clean coal technology	38600	6.24	-23	3
of various	A compariso	n of cost-benefits Emission Reduction (t)	of various centrel opti Concentration reduction (µg/m ²)	ons for TSP in Tai Cost-benefit ratio	Rank
control options	Natural gas utilization	31900	16.7	-0.489	2
for SO ₂ and	Centralized	69400	90.29	-1.601	1
TSP in Taiyuan	implementation of productivity policies	17000	18.57	3.711	5
	Clean coal technology	47100	93.13	-0.008	3
	Dust control		50	1.813	4

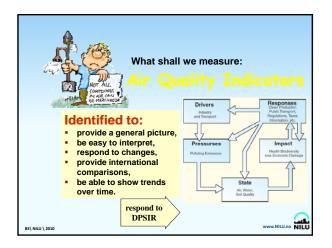


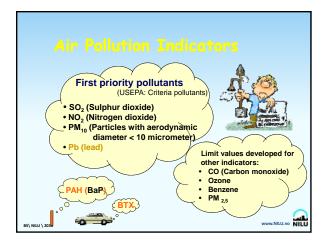


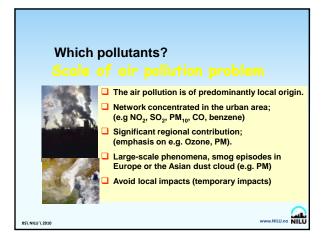


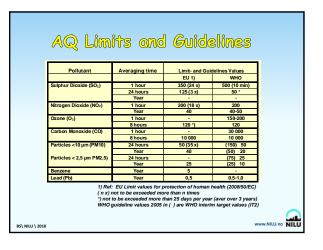


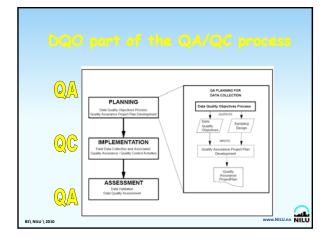


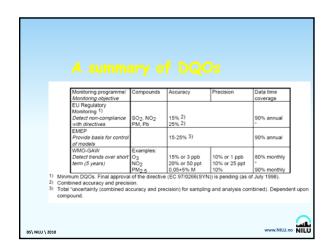


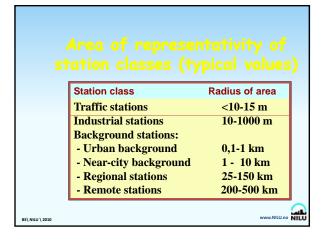


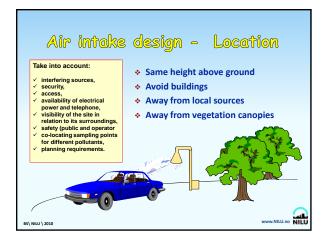


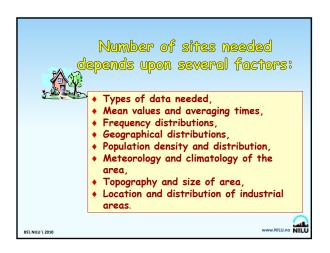


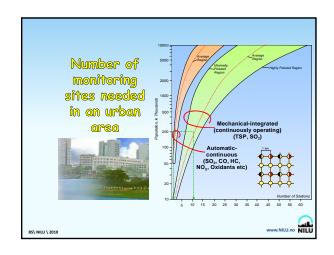



	QA/QC system	
	to assure a predefined quality of all da	ta
	 Quality Assurance Quality Control Quality Assessment 	
	Define controls Controls Verify Audit	
BS\ NILU \ 2010		

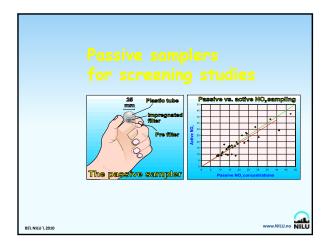



EU	For air quality assessment	Salphar doniale, nitrogen doniale				
		and souder of attro- gen and carbon monoticle	Anner	Periodae notes dM ₂₀ (M ₁₀) and had	brain has an of the second of the second sec	
	Fixed measurements (?)					
	Uncertainty	15 %	25 %	25%	15%	
	Minimum data capture	90 %	90%	90 %.	90 % during suntimer 75 % during win- ter	
	Minimum time coverage:					
	- when background and traffic		35 % (P)	-	-	
	- industrial sites	-	90%	-	-	
	Indicative managements				10.00	
	Uncertainty	25 %	30 %	50 %	30 %	
	Missimum data capture	90 %	90 %	90 %.	90%	
	Minimum time coverage	14 % (*)	14.% (?)	14.% (*)	> 10 % dorteg summer	
	Modelling uncertainty:					
	Hoarly	50.%	-	-	50 N	
	Eight-hour averages	50 %	1		50 %	
	Daily averages	50 %	-	not yet defined	-	
	Armaal averages	30 %	50%	50 %	-	

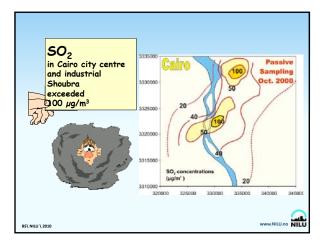




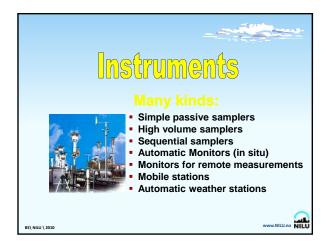
c	00	of Monitoring S	itations
	Type of area	ition system: Description	Type of station
	Urban	Continuously built-up area	Traffic
	Suburban	Largely built-up area: continuous settlement of detached buildings mixed with non-urbanized areas	Industrial Background :
	Rural	Areas that not fulfil the criteria for urban/suburban areas	- Near city - Regional - Remote
BS\ NILU \ 2010			WWW.NILLAR

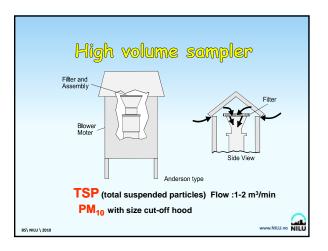

S	O ₂ , NO ₂ , partic	ulate matter	r and lead in	
	AME	BIENT A	IR	
	to assess comp in health and ale			
	ur	ban areas		
Population of applemeration	If maximum concentra assessment	tions exceed the upper hreshold (?)	If maximum concentr upper and lower as	utions are between the sessence thresholds
(thousands)	Pollutains except PM	PM (?) (sum of $PM_{\gamma \pi}$ and $PM_{\chi \pi}$)	Pollatants except PM	PM (?) (sum of PM ₁₀ and PM ₁
0-249	t	2	1	1
250-499	2	3	1	2
500-749	2	3	1	2
750-999	3	4	1	2
1 000-1 499	4	6	2	3
1 500-1 999	5	7	2	3
2 000-2 749	6	8	3	4
2750-3749	7	10	3	4
3750-4749	8	11	3	6
4 7 50-5 999	9	13	4	6
≥ 6 000	10	15	4	7

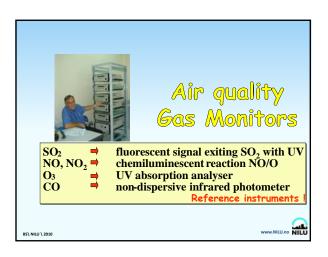
Ozone in AMBIENT AIR						
ed measurement and alert thresho	to assess compliance Ids where measurem	with target values ents are the only i	s long-term object nfo (EU Directives			
		,				
Population (s. 1.000)	Agglomerations (urban and suburban) (1)	Other zones (suburban and tural) (?)	Reral background			
< 250		1				
< 500	1	2	1			
< 1 000	2	2	1			
< 1 500	3	3	1 station/50 000 km ² as a			
< 2 000	3	4	average density over all			
< 2750	4	5	zones per country (2)			
< 3750	5	6	1			
> 3750	One additional station per 2 million inhabitants	One additional station per 2 million inhabitants	1			
of the stations shall be los	ban areas, where the highest exposure ated in suburban areas. for complex terrain is recommended		ur. In agglomerations at least 50			

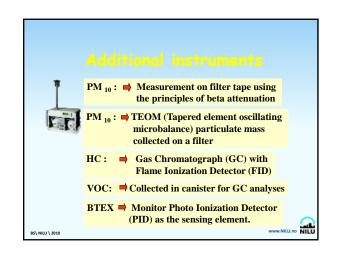

Sampling frequency and sampling time

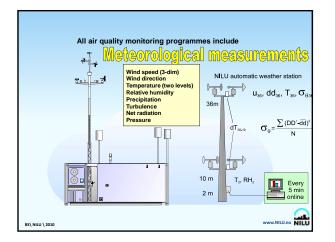
	Pollutant/ Indicator	Unit	Sample resolution	Average needed
and the second second	Carbon monoxide	mg/m ³	Hourly average	Hourly, 8-hour running average, annual max
	Nitrogen dioxide	μg/m ³	Hourly average	Daily average Annual average Frequency distribution
	Ozone	μg/m ³	Hourly average	Hourly, 8-hour running average, annual max
2003	Particulate matter	µg/m ³	Daily average	Daily average Annual average Frequency distribution.
A	Sulphur dioxide	μg/m ³	Hourly average	Daily average Annual average Frequency distribution.
	Lead	µg/m3	Annual average	Annual average
	Benzene	µg/m3	Annual average	Annual average
BS\ NILU \ 2010				

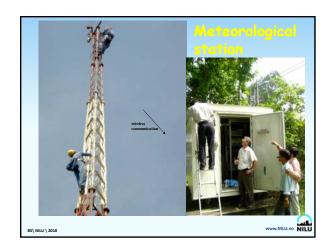


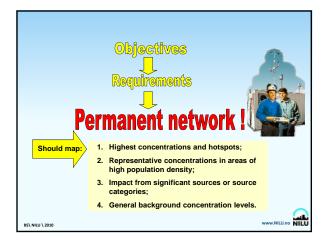




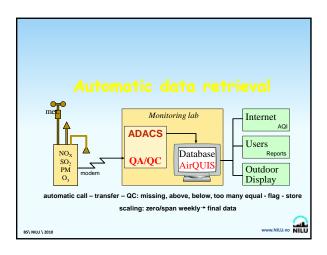


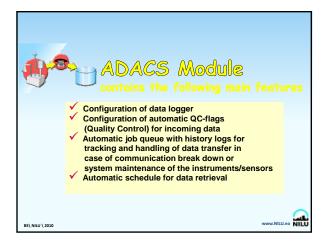

	heir Abil		nstrumen 1d Price	rs,
Instrument type	Type of data collected	Data availability	Typical averaging time	Typical pri (US \$)
Passive sampler	Manual, in situ	After lab analyses	1-30 days	20
Sequential sampler	Manual/ semi-auto, in situ.	After lab analyses	24 h	3000
Monitors	Automatic Continuous, in situ.	Directly, on-line	1h	>15 000
Remote monitoring	Automatic Continuous, path integrated	Directly, on-line	< 1 min	>100 000

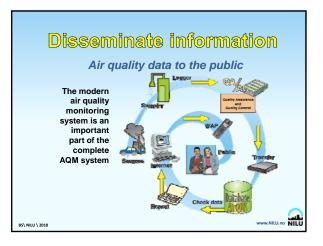


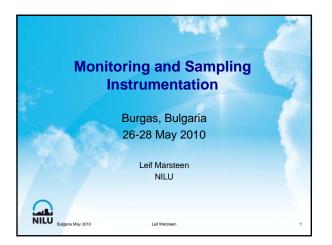


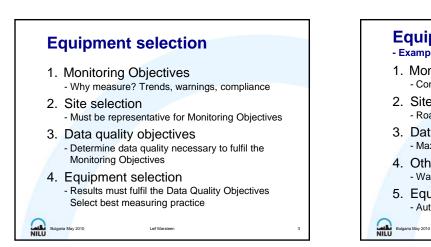


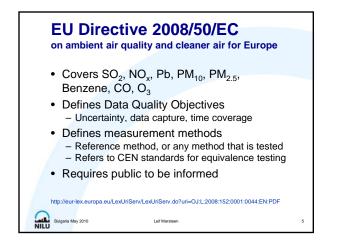


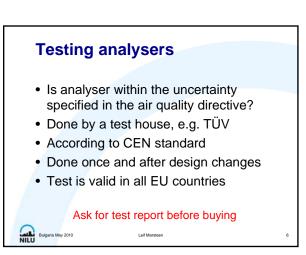






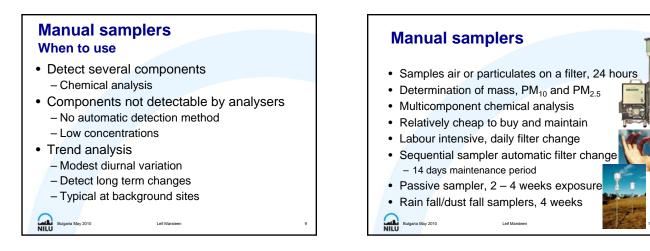

Air Quality Monitoring \ B Sivertsen, NILU

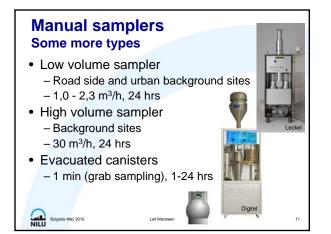


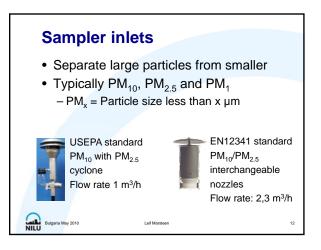

Equipment selection - Example 1. Monitoring Objectives

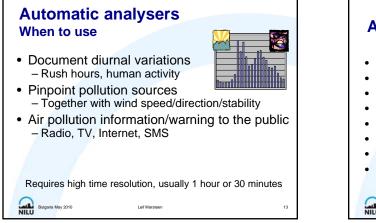
- Compliance with Directive 2008/50/EC
- 2. Site selection - Road side, Nitrogen dioxides (ref. directive)
- 3. Data Quality Objectives - Maximum 15 % uncertainty (ref. directive)
- 4. Other considerations - Warning/Information to the public (ref. directive)

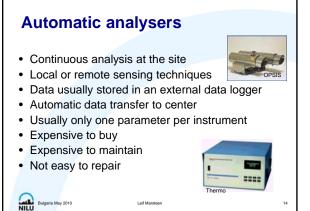
Leif Marste

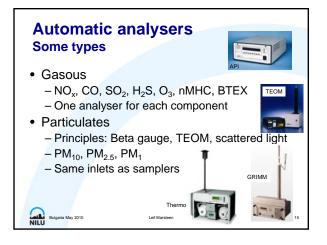

5. Equipment selection - Automatic NO_x analyser (ref. directive)

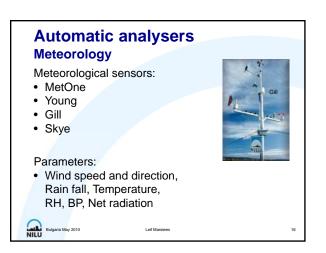


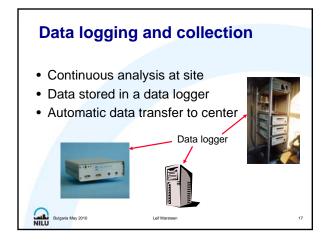


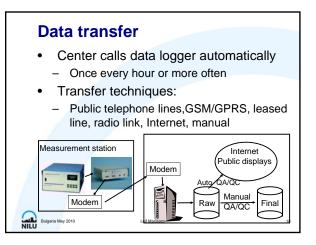

 Descri 	bes measuremer	nt methods
 Descri 	bes test procedu	re (equivalence testing)
Component	Measurement method	Reference to standard
NO, NOx, NO2	Automatic Chemiluninecsence	CEN/EN142111, Standard method for the measurement of the concentration of nitrogen dioxide and nitrogen monoxide by chemiluminescence
SO2	Automatic Ultraviolet fluorescence	CEN/EN14212, Standard method for the measurement of the concentration of sulphur dioxide by ultraviolet fluorescence
03	Automatic Ultraviolet photometry	CEN/EN14625, Standard method for the measurement of the concentration of ozone by ultraviolet photometry
со	Automatic Nondispersive infrared spectroscopy	CEN/EN14626, Standard method for the measurement of the concentration of carbon monoxide by nondispersive infrared spectrosco
BTX	Automatic, GC	CEN/EN14662, Ambient air quality - Reference method for measurement of benzene concentrations

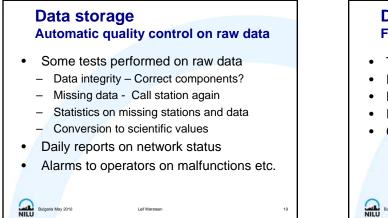


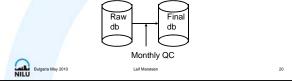


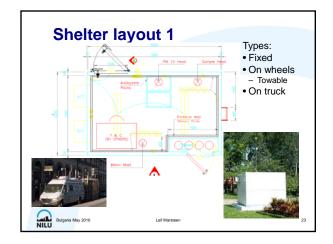


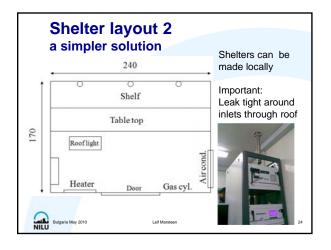


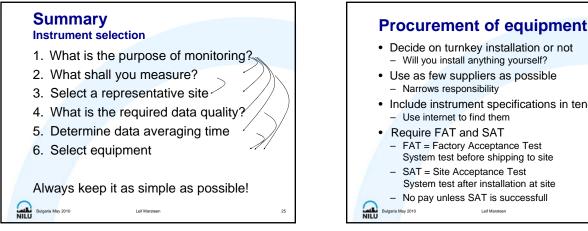


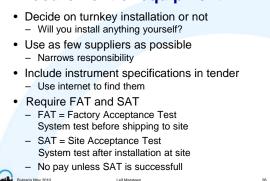


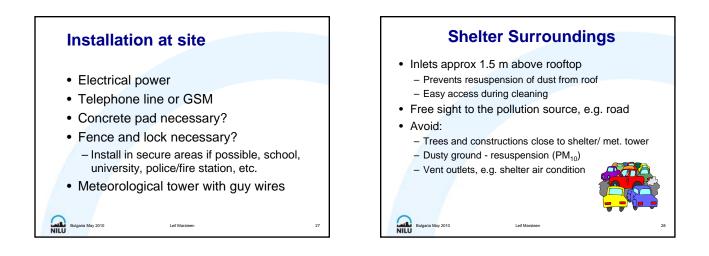


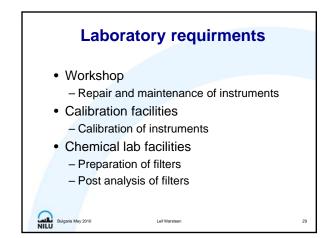

Data storage Final quality control

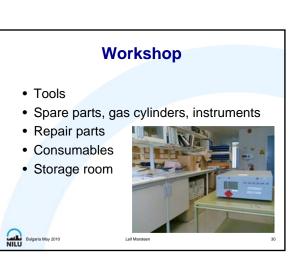

- Typically monthly (manual)
- Performed on raw data
- Data validation, removing not valid data
- Flag data as OK or not
- Conversion to scientific values (SI units)

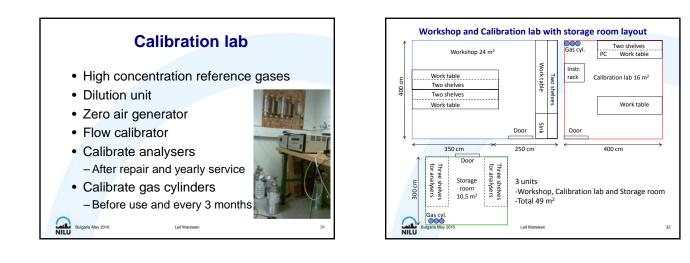


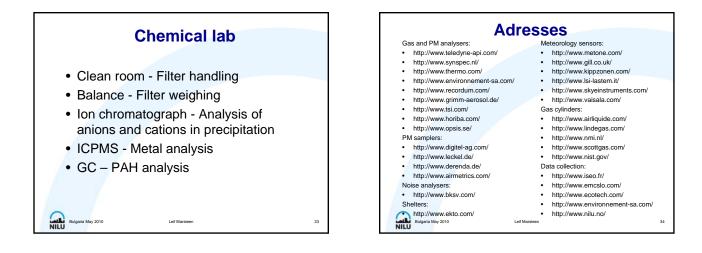


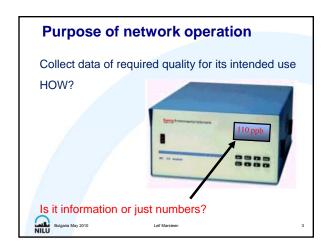

Shelter requirements Easy access Inspections, repairs - '24 hours' Heavy loads - Car parking nearby Hotection against Theft and damage - Install fence, lock Sunshine - No windows Outdoor environment - Air conditioned Data communication line Benches or racks for instruments No smoking, clean workplace

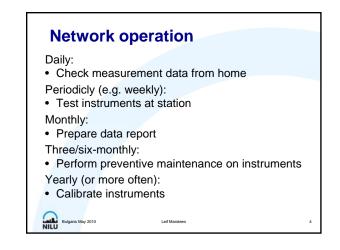


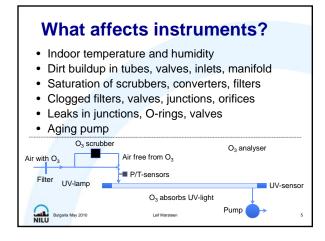


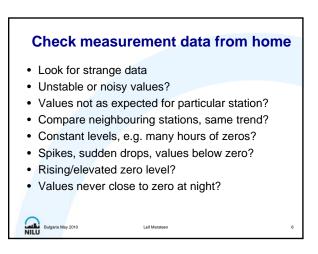


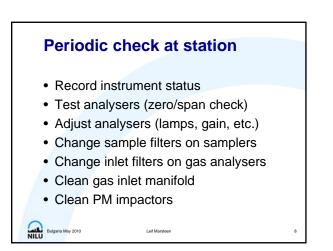


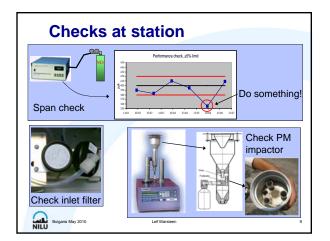


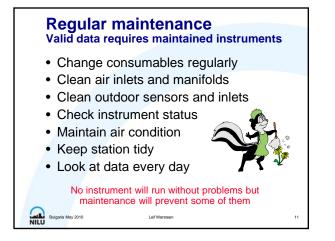


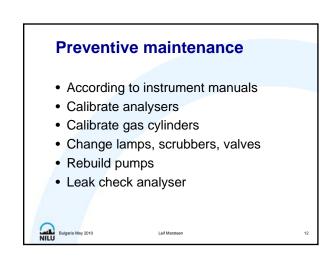


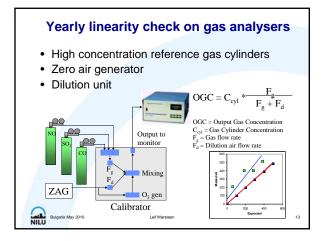




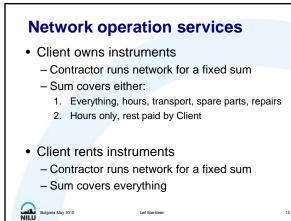








<section-header><section-header><list-item><list-item><list-item><list-item> Derive the series of the


Possible services to client

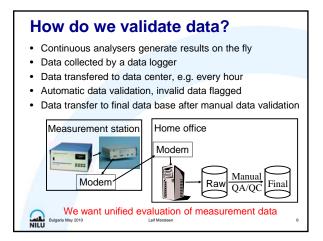
- Network operation all included
- Yearly service and calibration of analysers

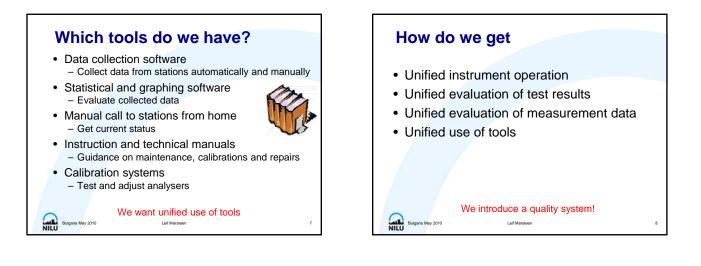
Leif Mars

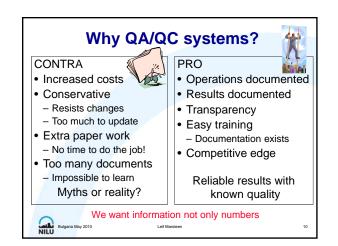
- Periodic / preventive maintenance
- Calibration of gas cylinders
- Data reporting

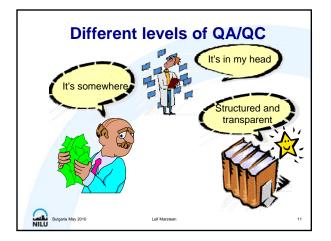
Bulgaria May 2010

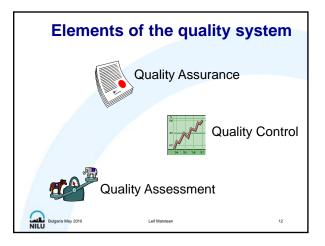


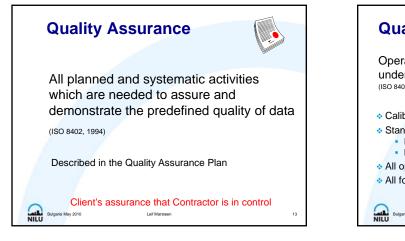


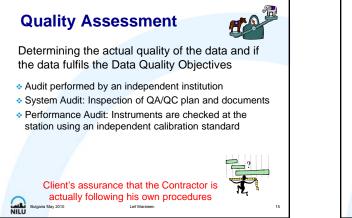


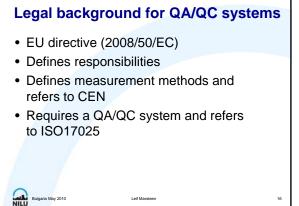










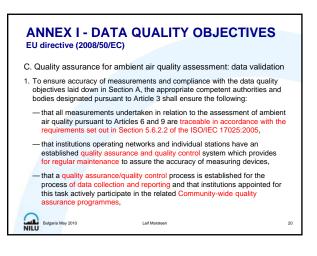


<text><text><list-item><list-item><list-item><list-item><list-item></table-row><table-container>

Roles of the Reference Lab

- · Implementing a quality system in the laboratory
- · Approving measurement systems (instruments, laboratories, networks)
- · Ensuring the traceability of the measurements at national level, by providing/certifying reference materials to networks
- Organizing intercomp./round robin tests at national level
- Participating in EC QA/QC programmes (intercomp.)
- · Exchanging information through the organisation of training sessions, workshops, conferences and guidance documents

Leif Marsteer


NILU Bulgaria May 2010

NILU

NILU

Bulgaria May 2010

Bulgaria May 2010

Reference to measurement methods EU directive (2008/50/EC)

- CEN develops standards (documents) - Measurement methods and QC measures - Laboratories must follow the standards
- ISO 17025 describes the quality organisation
 - Used by laboratories to develop quality systems

- Used by accreditation bodies when auditing labs

Leif Mar

Component Measurement method Reference to standard CEN/EN142111, Standard method for the measurement of the concentration of nitrogen Automatic Chemiluninecsence

NO NOx

Some CEN standards

SO2	Automatic	chemiluminescence CEN/EN14212, Standard method for the
002	Ultraviolet fluorescence	measurement of the concentration of sulphur dioxide by ultraviolet fluorescence
03	Automatic Ultraviolet photometry	CEN/EN14625, Standard method for the measurement of the concentration of ozone by ultraviolet photometry
со	Automatic Nondispersive infrared spectroscopy	CEN/EN14626, Standard method for the measurement of the concentration of carbon monoxide by nondispersive infrared spectroscop
BTX	Automatic, GC	CEN/EN14662, Ambient air quality - Reference method for measurement of benzene concentrations

Quality system requirements

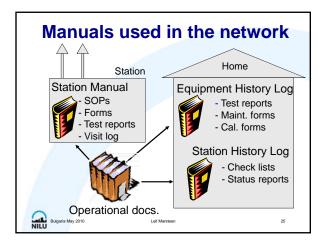
- Management requirements
- Technical requirements
- · Requirements found in: EN ISO 17025:2005 General requirements for the competence of testing and calibration laboratories

Leif Marsteer

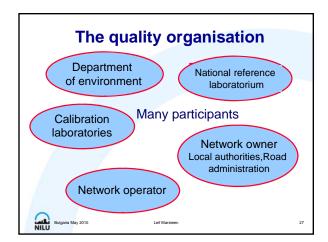
Quality Manual - Example Organisation and responsibilities Measurement traceability · Measurement methods Task schedules Action criteria • Standard Operating Procedures (SOPs) Training

Leif Marsteer

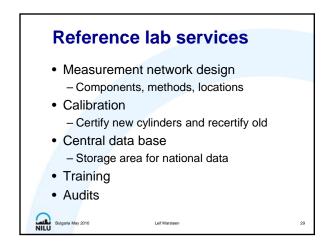
Internal audits

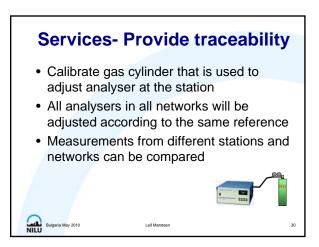

NILU

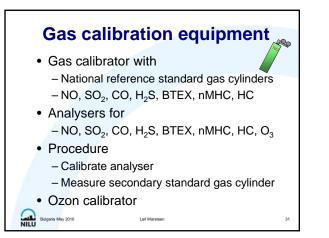
Bulgaria May 2010

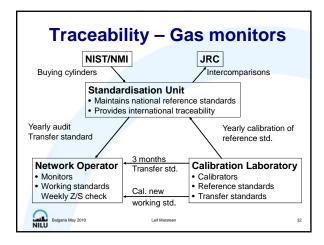

23

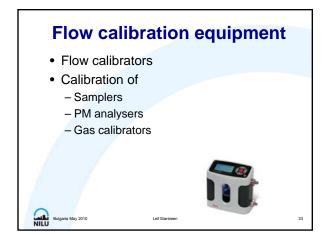
Document management system

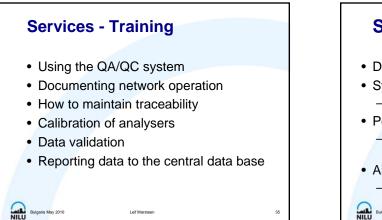

24

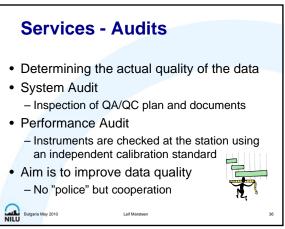




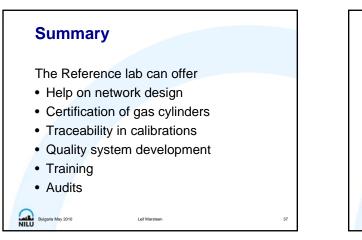



etwork operator - Reference lab	NO	RL
Measurement network design	Х	Х
Select monitoring sites	Х	
Select instruments	Х	
Maintain monitoring sites	х	
Calibrate instruments and gas cyl.	Х	Х
Data validation, collection and storage	Х	
Maintain the central data base		Х
Provide traceability		Х
Maintain the national reference std.		Х
Maintain the quality system		Х
Audits, once a year		Х

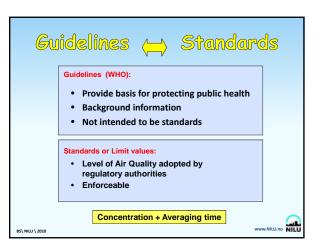


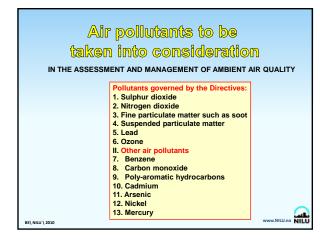


- Adapting QA/QC system to networks
- · Based on ISO 17025 standard
 - Organisation and responsibilities
 - Network traceability
 - Measurement methods
 - Task schedules
 - Action criteria
 - Standard Operations Procedures (SOPs)
 - Training

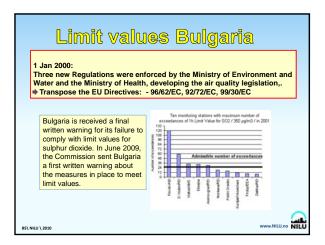

Bulgaria May 2010

 Document management system NILU

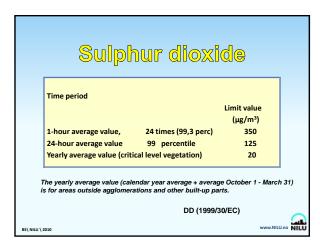


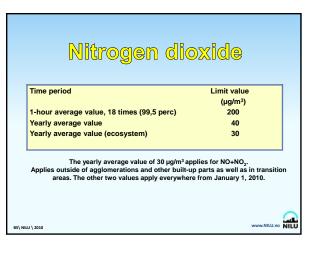


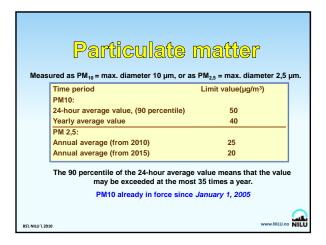
Adresses	
Accreditation bodies:	
 http://www.albanianaccreditation.gov.al/ 	
 http://www.ukas.com/ 	
 http://www.akkreditert.no/en/ 	
AQUILA and JRC:	
 http://ies.jrc.ec.europa.eu/aquila-homepage.html 	
CEN	
http://www.cen.eu/	
ISO	
 http://www.iso.org 	
EU directive (2008/50/EC)	
 http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri= OJ:L:2008:152:0001:0044:EN:PDF 	
NILD Buggins May 2010 Lef Marsteen	38

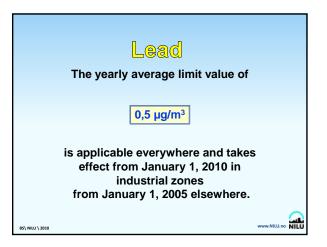


Pollutant	Averaging time		idelines Values
		EU 1)	WHO
Sulphur Dioxide (SO ₂)	1 hour	350 (24 x)	500 (10 min)
	24 hours	125 (3 x)	50 *
	Year	-	-
Nitrogen Dioxide (NO ₂)	1 hour	200 (18 x)	200
	Year	40	40
Ozone (O ₃)	1 hour		150-200
	8 hours	120 *)	120
Carbon Monoxide (CO)	1 hour	-	30 000
	8 hours	10 000	10 000
Particles <10 µm (PM10)	24 hours	50 (35 x)	(150) 50
	Year	40	(50) 20
Particles < 2,5 µm PM2,5		-	(75) 25
	Year	25	(25) 10
Benzene	Year	5	-
Lead (Pb)	Year	0,5	0.5-1,0

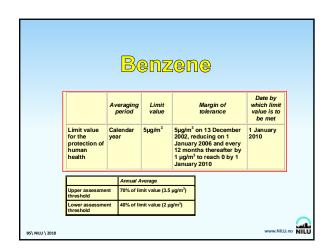

\bigcirc		
EU air	r quali	ity Directives
Framework D: Daughter D: Council Dir:	(93/389/EEC)	Ozone Assessment Monitoring CO ₂ and GHG
	(2004/107/EC) World Heal	As, Cd, Hg, Ni, PAH th Organisation (WHO) Guidelines
NILU \ 2010		www.NILU.no

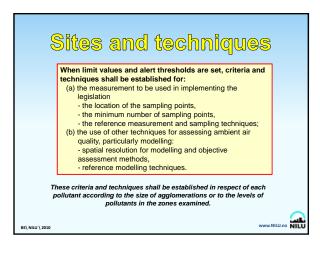

	-
ity Directive	
004 summarized 2008 P)	

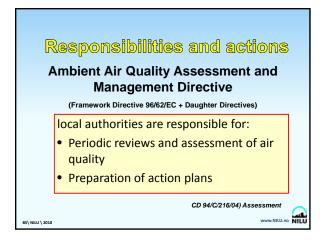

	EU limit values
	 The EU limit values specify for most of the compounds a certain number of hours or days when the limit value may be exceeded. The Directives clearly specify the proportion of valid data needed as well as margin of tolerance. The EU Directives also specify lower and upper threshold values which indicate levels at which air quality assessment and measurements has to be undertaken
B5\ NILU \ 2010	WWW.NILLOO

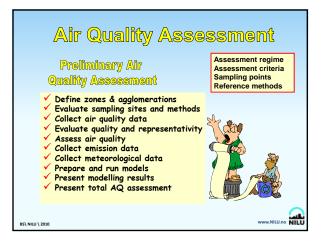

	EU Directives 1 Qualit	1996-2004 y Limit val))
	Averaging time	1 h	24 h	annual	
	SO2	350 (24)	125 (3)	20*	
	NO ₂	200 (8)	-	40	
	PM10 2005		50 (25)	30	
	РЬ			0.5	
L	* related to ecosy (n) = number of		D) <i>Directive 20</i> permitted p		ay 2008
BS\ NILU \ 2010				www	NILU.no

EU Air Quali

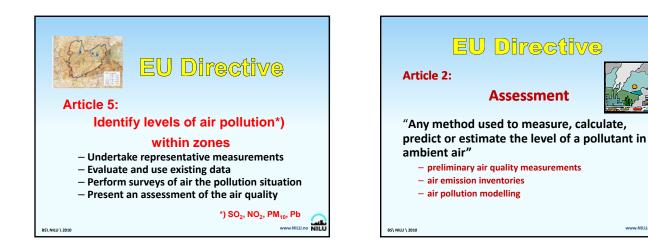


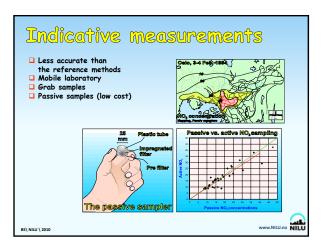


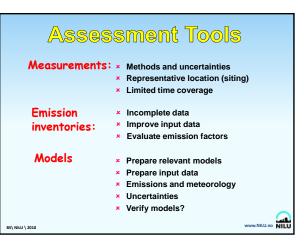


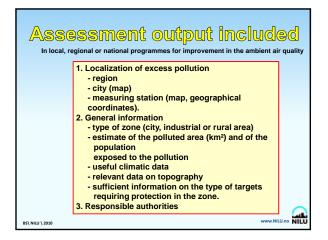


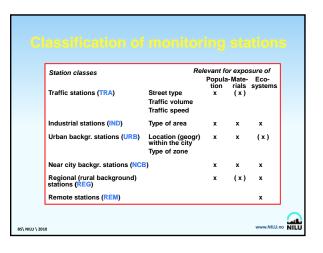
Α	ective 2004/107/ rsenic, cadmium, mercury, nickel and cclic aromatic hydrocarbons in ambient air	
	Target values for arsenic, cadmium, nickel and benzo(a)pyrene: Arsenic 6 ng/m³ Cadmium 5 ng/m³ Nickel 20 ng/m³ Benzo(a)pyrene 1 ng/m³ For the total content in the PM ₁₀ fraction averaged over a calendar year	
be determine ambient air p	<u> </u>	

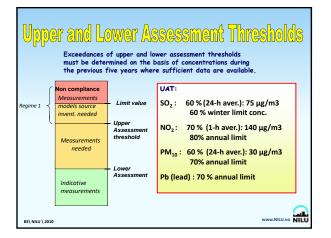


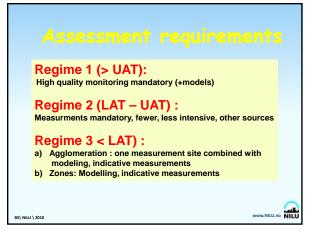


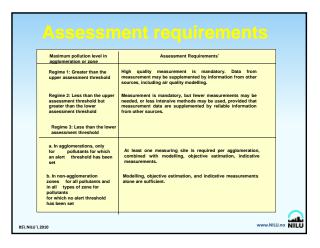


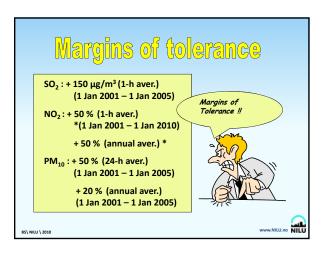


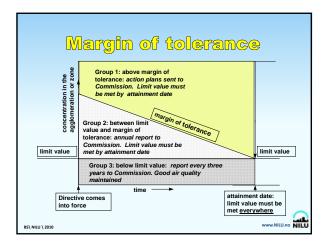


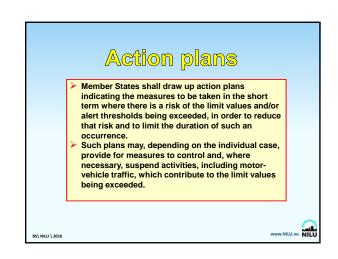


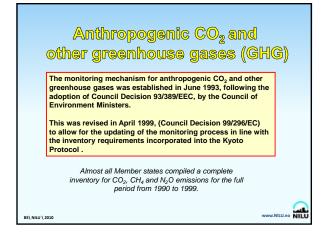


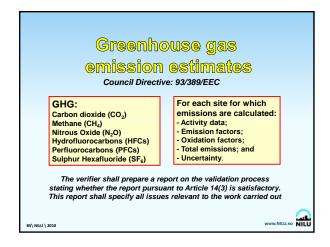


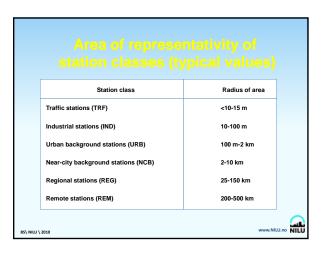

c	Iwae	of Monitoring S	tatione
		tion system:	
	Type of area	Description	Type of station
	Urban	Continuously built-up area	Traffic
	Suburban	Largely built-up area: continuous settlement of detached buildings mixed with non-urbanized areas	Industrial Background :
	Rural	Areas that not fulfil the criteria for urban/suburban areas	- Near city - Regional - Remote
BS\ NILU \ 2010			

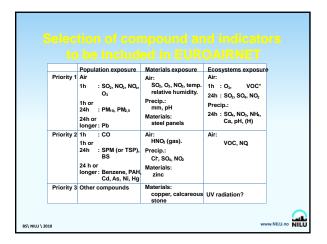

Minimum nui SC	SO ₂ , NO ₂ , particulate matter and lead in					
	AME		IR			
	d measurement to assess compliance with limit values for the protection human health and alert thresholds (EU Directives)					
	ur	ban areas				
Population of applomeration			If maximum concentrations are between the upper and lower assessment thresholds			
or pose (thousambs)	Pollutants except PM	PM (?) (sum of $PM_{\gamma +}$ and $PM_{\gamma +}$)	Pollatants except PM	PM (5 burn of PM ₁₀ and PM		
0-249	t	2	1	1		
250-499	2	3	1	2		
500-749	2	3	1	2		
750-999	3	4	1	2		
1 000-1 499	4	6	2	3		
1 500-1 999	5	7	2	3		
2 000-2 749	6	8	3	4		
2750-3749	7	10	3	4		
3750-4749	8	11	3	6		
4 7 50-5 999	- 9	13	4	6		
≥ 6 000	10	15	4	7		

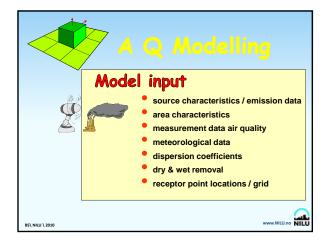


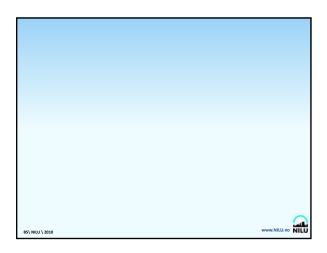


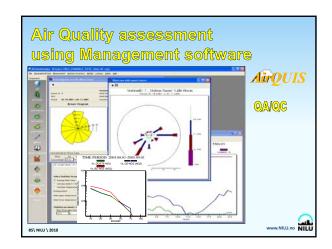


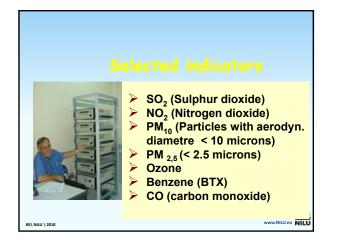


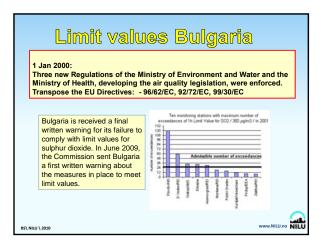


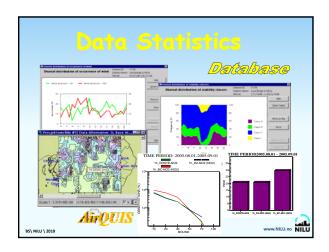


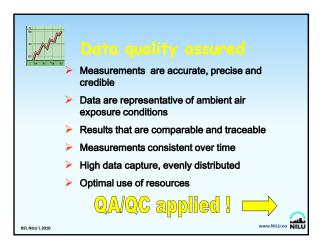

	For population e	
Type of area	Criteria	
	Area selection	Station selection
Agglomerations		
>0.5 mill	All cities	All stations (up to 20 stations) All station categories represented in the cit
0.25-0.5 mill	At least 25% of the cities	High, medium and low levels of industrialization
0.05-0.25 mill	At least 10% of the cities	High, medium and low levels of industrialization
Rural areas	At least 50% of the areas with population density >2	One station to represent each of the selected areas.
Industrial areas outside cities	All areas with air pollu tion above the WHO AQ Guidelines	All existing monitoring stations in these areas.

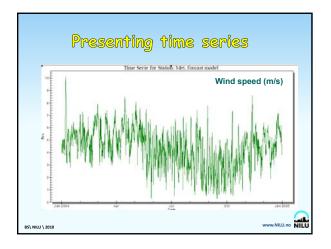

Compound Date for	PM ₁₀						
D-1- /		PM ₁₀	Pb	Pb	Benzen	со	
meeting the limit	01.01.	01.01.10	01.01.05	01.01.10	01.01.10	01.01.05	
Averaging time	24 timer	Calendar vear	Calendar	Calendar year	Calendar vear	8 timer	
Limit value for health impact (nr exceed/vr.)		,	0,5	0,5 (1,0 from 01,01,05)	5*	10	
Guideline value for health impact	50 (7 x))	20					
Tolerance margin health		10 (50% 01.01.05)	0,5 (100%)		5 (100%)	5 (50%)	
Upper assment threshold (UAT) (exceed/yr)	30 (7)	14	0,35		3,5	7	
UAT Ecosystem UAT vegetation							
Lower AT Health (ex. per year)	20 (7)	10	0,25		2	5	
LAT ecosystem							

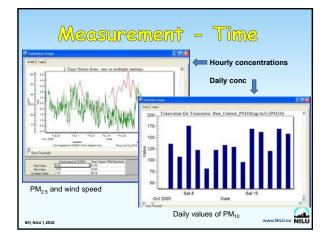

	Air Qu	ality EU	-directi	ves for S	O ₂ and	NO2	
	Compound	SO ₂	SO ₂	SO ₂	NO ₂	NO ₂	1
	Date meeting the limit	01.01.05	01.01.05	19.07.01	01.01.10	01.01.10]
	Averaging time	1 hour	24 hours	winter-half year	hour	Calendar year	
	Limit value for health impact (nr exceed/yr)	350 (24 times)	125 (3 times)		200 (18 times)	40]
	Limit value, ecosystem			20			
	Limit value vegetation Tolerance						4
	margin health Limit value for	150 (+43%)			100 (50%)	20 (50%)	
	warning (3 consec. hrs)	500			400		
	Upper assm. T. (no. Exceed per year)		75 (3 times)		140 (18)	32	1
	UAT Ecosystem			12 Winter			1
	Lower AT Health (ex. per year)		50 (3)		100 (18)	26	
	LAT ecosystem			8 (winter)			1
	LAT vegetation						1
		(Ca	ouncil Direc	tive 1999/30	/EC of 22 A	pril 1999).	
				,			
BS\ NILU \ 2010							www.NILU.no NILU

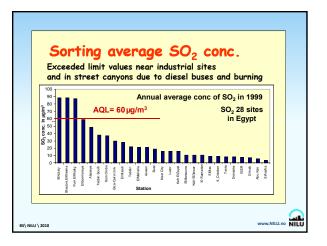


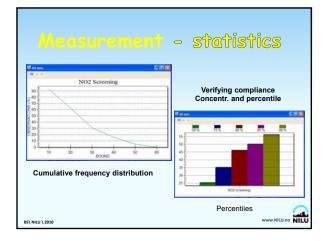


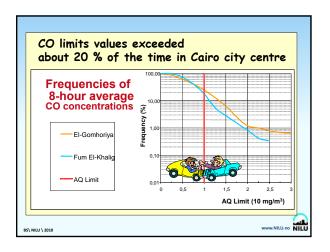


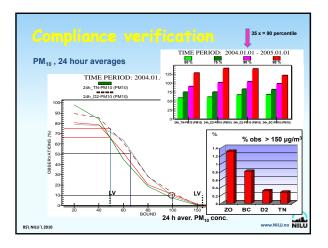


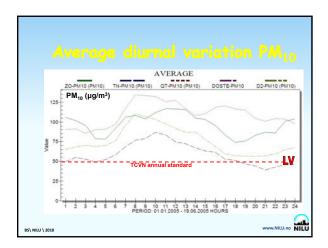

			delines Values
		EU 1)	WHO
Sulphur Dioxide (SO2)	1 hour	350 (24 x)	500 (10 min)
	24 hours	125 (3 x)	50 *
	Year	-	-
Nitrogen Dioxide (NO ₂)	1 hour	200 (18 x)	200
	Year	40	40
Ozone (O ₃)	1 hour	•	150-200
	8 hours	120 *)	120
Carbon Monoxide (CO)	1 hour	-	30 000
	8 hours	10 000	10 000
Particles <10 µm (PM10)	24 hours	50 (35 x)	(150) 50
	Year	40	(50) 20
Particles < 2,5 µm PM2,5)	24 hours	-	(75) 25
	Year	25	(25) 10
Benzene	Year	5	-
Lead (Pb)	Year	0,5	0.5-1,0

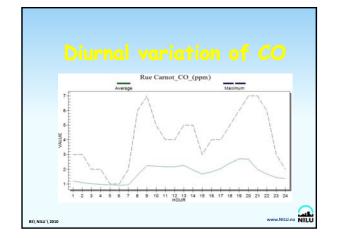


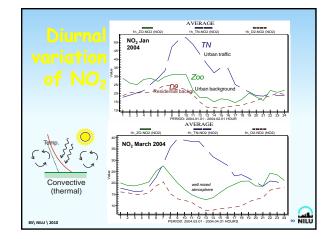


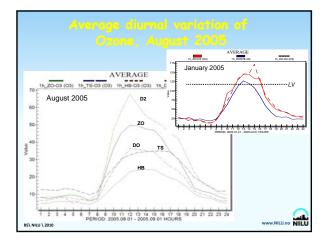


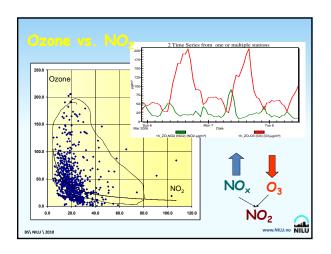


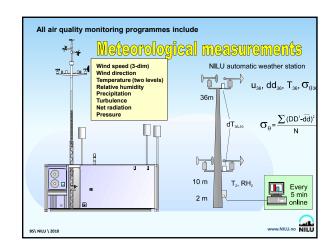


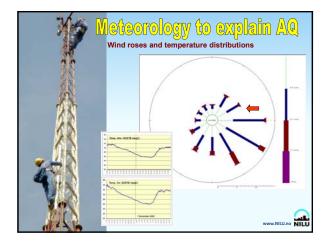


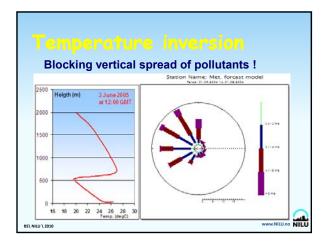


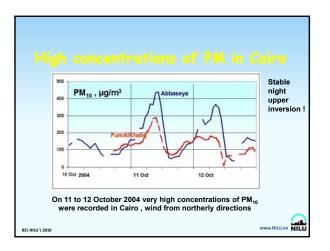


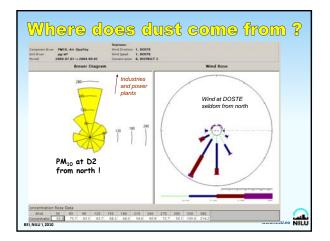


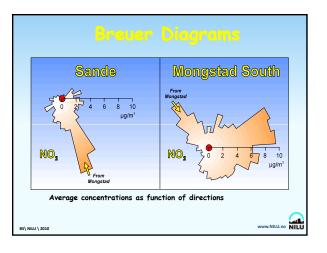


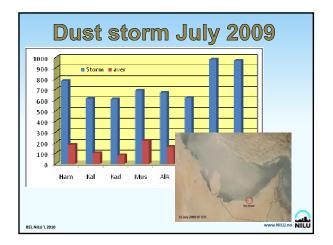


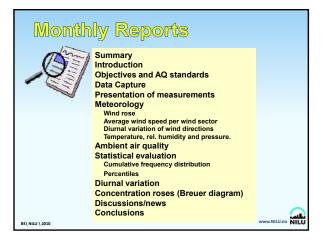




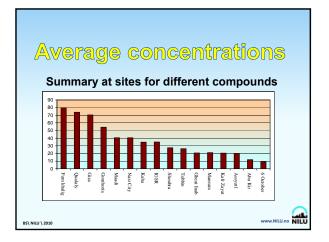


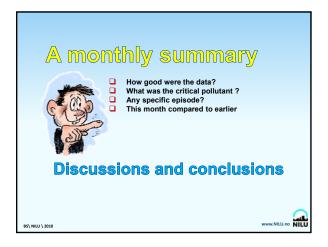


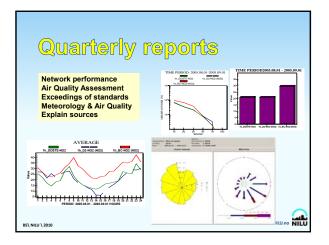


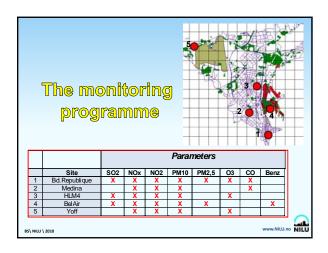

Daily re Based on AQ V

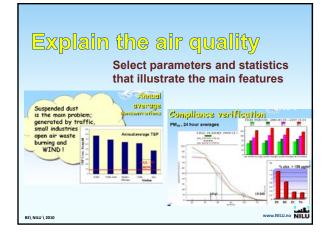
Public pages

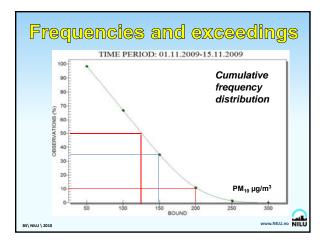

BS\ NILU \ 2010

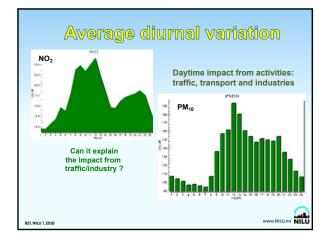

ports Web pages			Web Based	
	Admin pages		AQI	= Air Qı
1- 1000 -1-1-	Al-Onlyse (administration		Air Quality Index (AQI) Values	Levels of Healt Concern
	Name of Station regariner		When the AQI is in this range:	air quality conditions are.
ACCOUNTS -	Name (Name and Address of the other states of		0 to 50	Good
		and installing	51 to 100	Moderate
Diff.	1 A 1	Contractions.	101 to 150	Unhealthy for Sensitive Group
10 10 10 10		The second second	151 to 200	Unhealthy
10000	A 1997		201 to 300	Very Unhealthy
	- 1980 dag	_	301 to 500	Hazardous
	The Hand		BS\ NILU \ 2010	

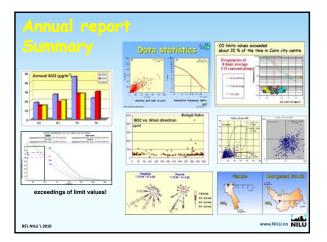

	<u>into</u>	"on-li	ne"
Based	on simp	lified pres	entations
AQI	= Air Qua	lity Index	The AQI = index for reporting daily air quality: - how clean or polluted is
When the AQI is in this range:	air quality conditions are:	as symbolized by this color:	the air, - Indicate associated
0 to 50	Good	Green	health concerns you
	Moderate	Yellow	should be aware of.
51 to 100	Unhealthy for	Orange	Pollutant concentration
51 to 100 101 to 150	Sensitive Groups		AQI = x 100
	Unhealthy	Red	
101 to 150		Red Purple	Pollutant limit value

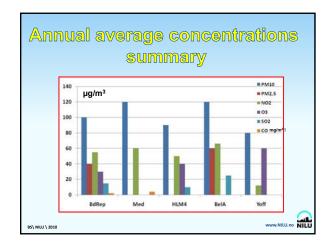


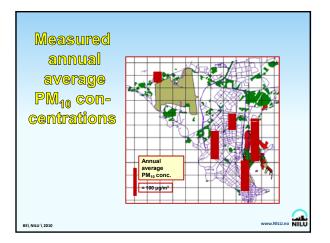

		Dat	8	(200	a <mark>r</mark>	<mark>)</mark> t	U	re)		
Include:		Station Name					Pa	ramete	r			_
•Sites with map	No.	Station Name	SO_2	NO_2	со	O ₃	PM ₁₀	H_2S	CH ₄	BETX	Met.	Noise
Data quality	1	Hamdan Street	87.8	96.3	68.6		99.4		0	0	100	66.6
•Data availability	2	Khadejah School	66.5	66.9		67.5	67.1	67.5	0		67.5	67.5
•Explain errors	3	Khalifa School	99.6	94.3		100	74.5	99.1	0	-	100	33.8
•Simple statistics	4	Mussafah	100	92.7			99.6	100	0		100	0
	5	Baniyas School	96.9	99.4		100	100	93.3	0		93.5	100
Data availability	6	Al Ain Islamic Institute	94	0		100	99.7	91.4	0		99	100
per site	7	Al Ain Street	0	85.4	83.2		99.9		0	98	100	100
and parameter	8	Bida Zayed	93	0		0	99.3	97.9	0		97.1	100
•	9	Gayathi School	90.5	100		73.8	100	98.2	0		98	100
%	10	Liwa Oasis	92.4	78.7		98.2	100		0		100	100
												_

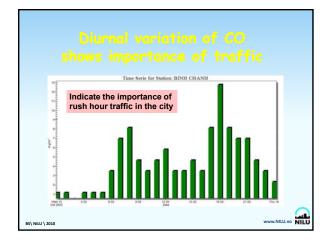


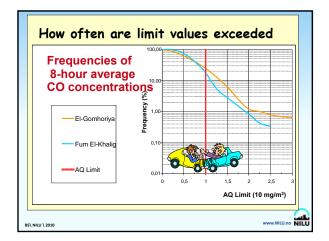


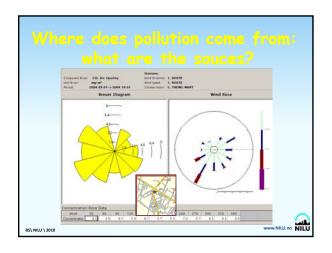


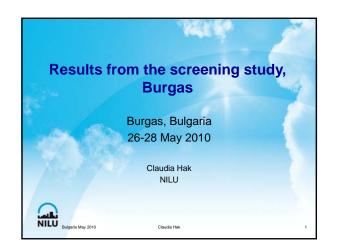


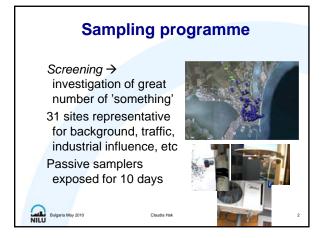


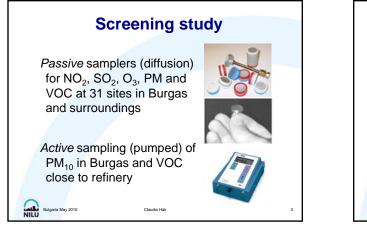


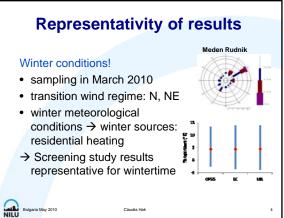


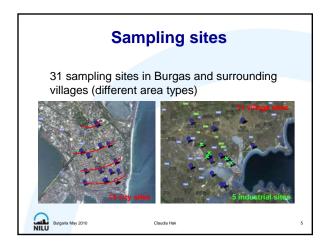


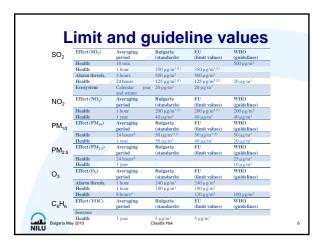


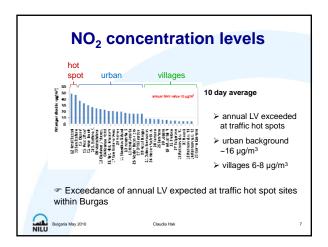

AQ assessment & reporting $\ C$ Hak, NILU

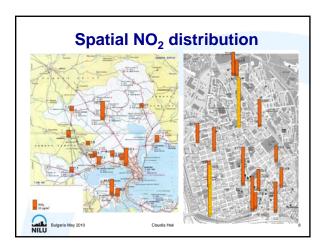


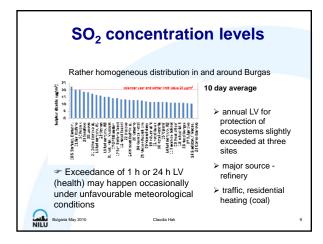


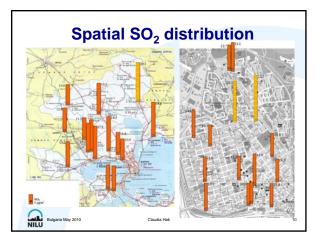


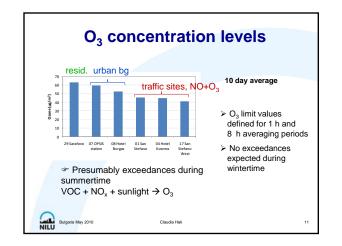


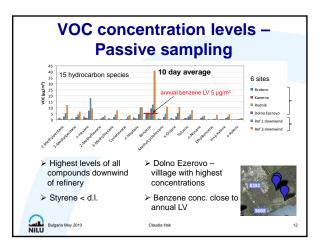


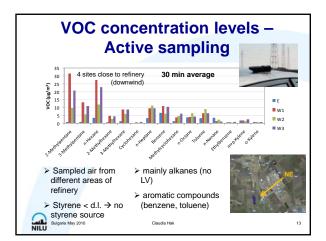


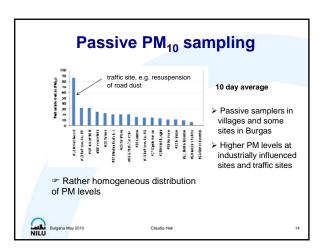


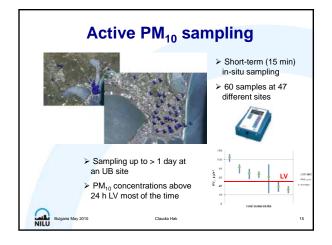


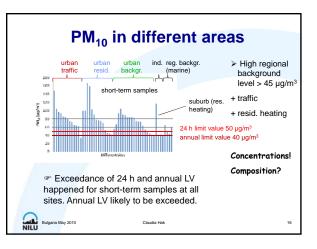


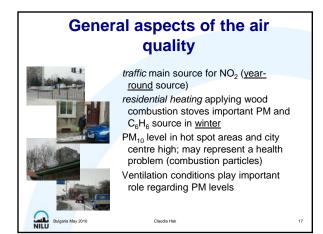


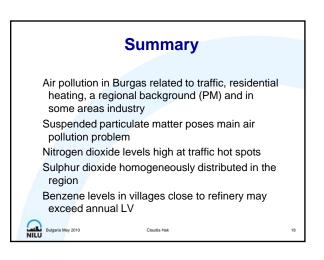


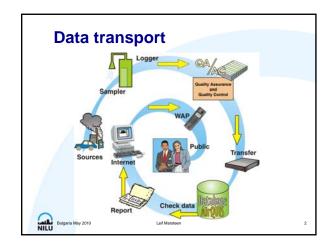






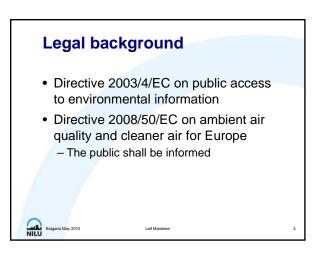


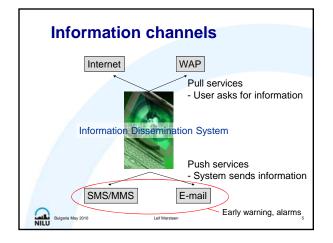


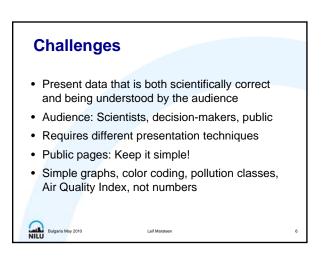


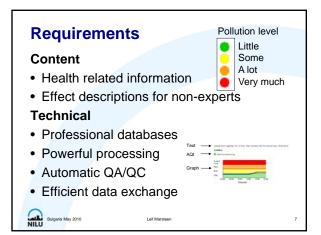
Information distribution

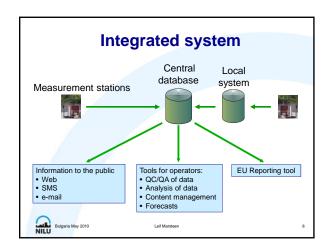
Relevant for:

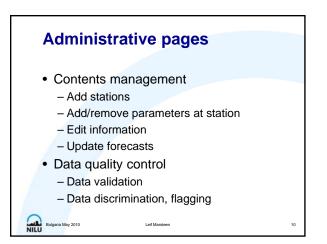

NILU

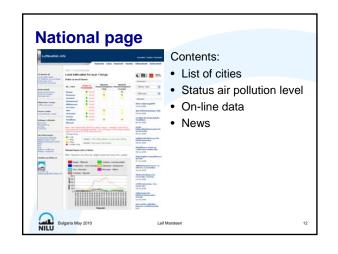

• Informing the public

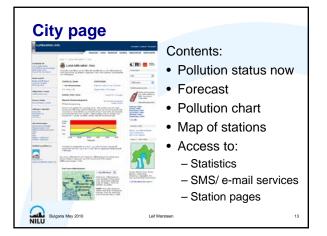



- Informing governmental organisations
- Informing non-expert decision makers
- Supporting the operators of Environmental Management Systems

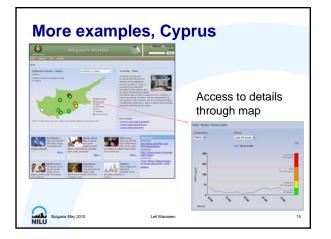

Leif Ma



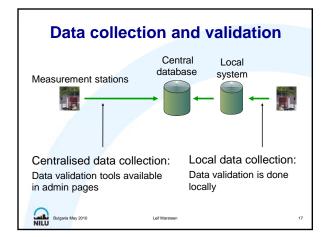

- Forecasts
- · Health warnings/recommendations
- On-line data
- Statistics

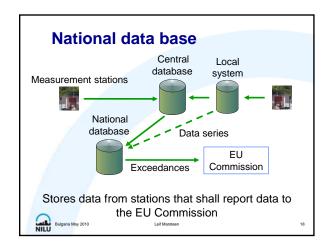

Bulgaria May 2010

- Compliance views
- Facts on air pollution and regulations


Leif Marstee

Service for SMS and e-mail



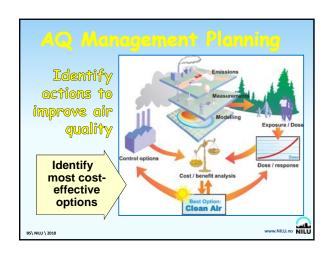


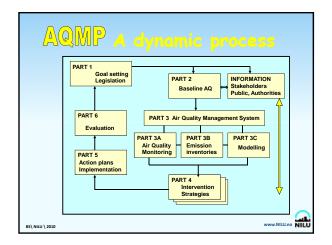
20

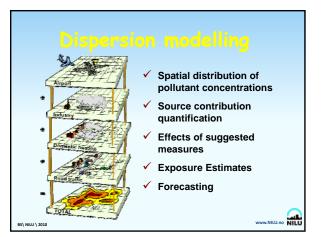
Summary

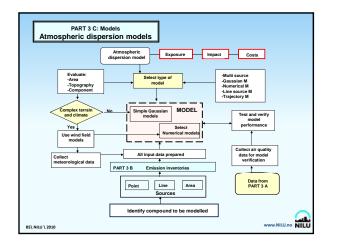
- Information to the public is required
- Via Web, SMS, WAP
- Forecasts

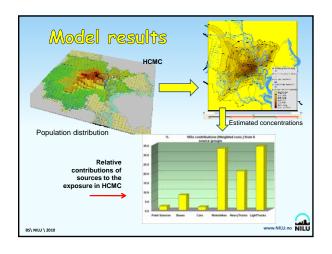
Bulgaria May 2010

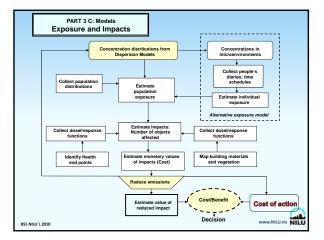

- On-line data
- Historical data
- Data reporting to the Commission

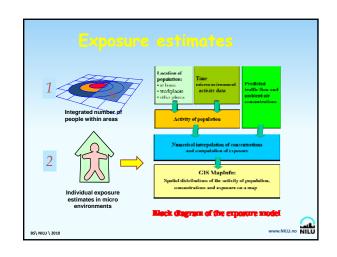

Leif Marst

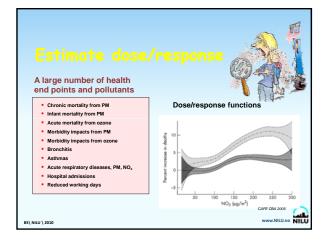




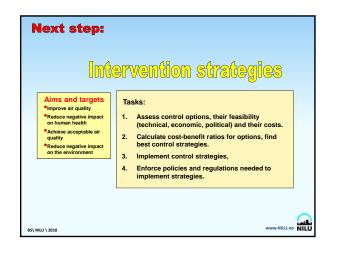


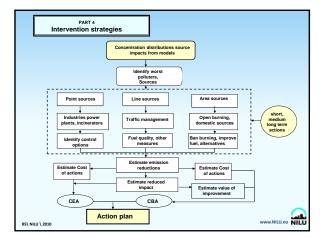


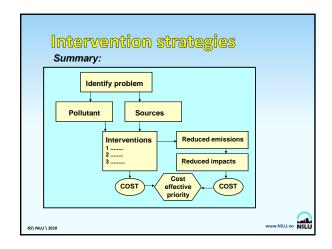


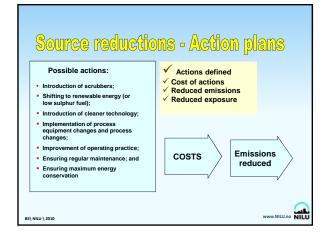


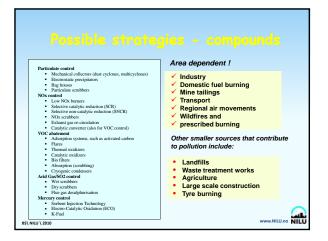
AQ management planning \ B Sivertsen, NILU

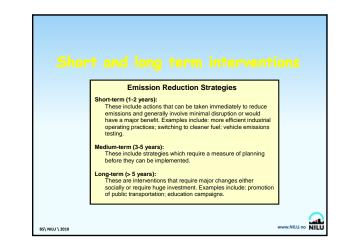


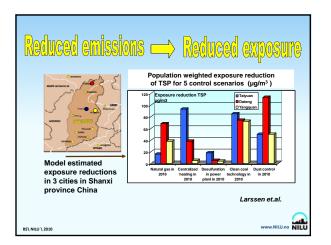


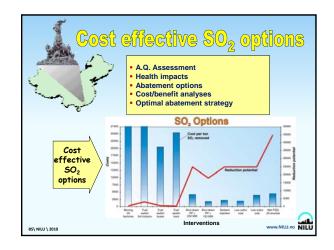

Expo	sure r	espons	2
relati	onching	s for P	M
Meta-analyses	; time series mo	orbidity study in	China
Health end point	Diseases	% per $\mu g/m^3 PM_{10}$	s.e.
Hospital	Resp dis.	0.12	0.02
admission	Cardiov. Dis.	0.07	0.02
New cases	Chronic Bronchitis	0.48	0.04
		Aunan	& Pan, 2004
EU Cost Benefit	Analyses (CAFÉ	CBA 2005)	
Mortality from chron Increase mortality ch	ic exposure : pronic exposure:	4 % / 10 μg/m ³ PM ₁₀ (In 6% / 10 μg/m ³ PM _{2.5} (P	fant; 0-1 yr) ope et al.)
Respiratory hospital	admission :	1 % / 10 µg/m ³ PM ₁₀ (0	-64 yrs)

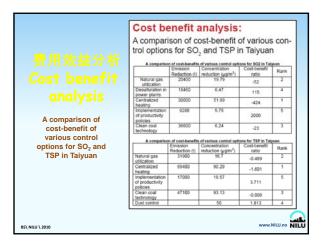



AQ management planning \ B Sivertsen, NILU

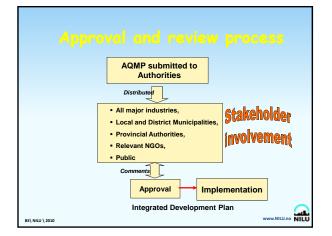


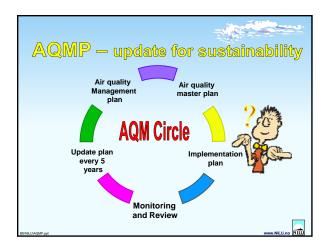


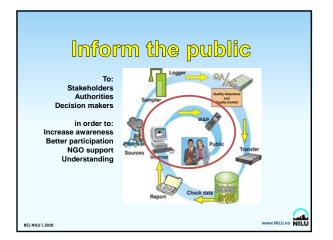


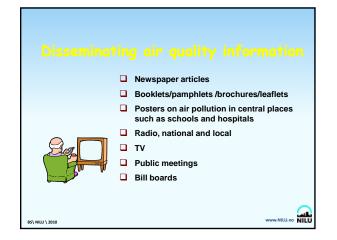

Prioritise	9						
1255	Input from	n Stakeł	olders a	and Indu	stries		
	 ✓ Validat ✓ Expan ✓ Policy 	- Stratege e emissior te cost wit d with add options - nic analyse	n data h recent litional te complian	installatio chnology	ns		
	Es	timated costs	; (US\$) per to	on reduced ir	n a specific a	rea	
		NOx	SOx	PM10	CO	HC	
	Low	5	1000	400	5	200	
	High	175000	167000	389000	38000	27000	
	Average	43900	52400	92500	26300	6300	
BS\ NILU \ 2010						www.N	

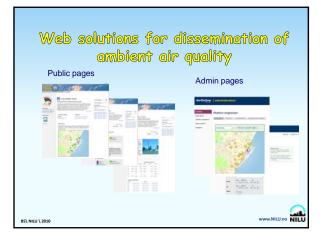
Possible health end points and pollutants Chronic mortality from PM Infant mortality from PM Acute mortality from POM Morbidity impacts from PM Norbidity impacts from ozone				st of Dacts Europe
Mortality	Median value		Mean val	ie
Infant mortality	€1,500,000/deat	h	€4,000,00)/death
Value of statistical life	4980.000/death		€2.000.00)/death
Value of a life year	€52,000/year		€120,000/	year
Morbidity	low	central		high
Chronic bronchitis	€120,000/case	€190,000/cas	se	€250,000/case
Respiratory/cardiac hospital admissions		€2,000/admis	ssion	
Primary care consultations		€3/consulta	tion	
Restricted activity day (stay in bed)		€130/day		
Minor restricted activity day		€38/day		
Use of respiratory medication		€I/day		
		€38/dav		

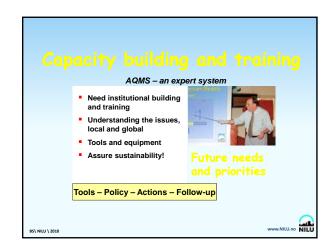


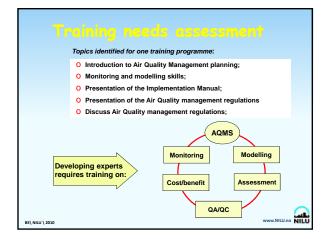


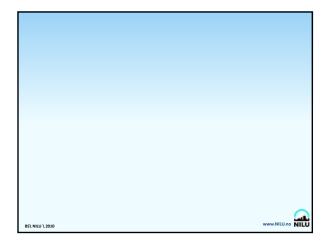

AQ management planning \ B Sivertsen, NILU











2010

 REFERENCE:
 O-109077

 DATE:
 MAY 2010

NILU is an independent, nonprofit institution established in 1969. Through its research NILU increases the understanding of climate change, of the composition of the atmosphere, of air quality and of hazardous substances. Based on its research, NILU markets integrated services and products within analyzing, monitoring and consulting. NILU is concerned with increasing public awareness about climate change and environmental pollution.

